Регулятор давления тормозной системы

Техническое обслуживание тормозной системы

Регулировку ходов штоков тормозных камер проводите в случае превышения величины 45 мм. В зависимости от хода штока меняется зазор в тормозных механизмах между тормозной накладкой и барабаном. Перед регулировкой ходов штоков доведите давление в пневмоприводе до максимальной величины (при этом должен сработать регулятор давления). Для достижения максимального давления в контуре задних тормозов рычаг регулятора тормозных сил переведите в верхнее положение и зафиксируйте на время проведения регулировки. Тормозные барабаны должны быть холодными, а стояночная тормозная система выключена. Регулируйте зазор поворотом оси червяка регулировочного рычага, предварительно ослабив пробку-фиксатор на один-два оборота (рис. 6-33). Поворачивая ось червяка, установите величину хода штока тормозной камеры согласно таб. 6-1. Необходимо, чтобы штоки правых и левых камер на каждом мосту имели по возможности одинаковый ход (разница не более 5 мм) для получения одинаковой эффективности торможения правых и левых колес. Для более эффективной работы тормозов рекомендуется выставлять ход штоков по нижнему пределу значений, указанных в таблице 6-1.

Ход штока тормозной камеры, мм

После регулировки через 2. 5 км проверьте нагрев тормозных барабанов, если температура барабана более 60-80°С, отпустите регулировочный рычаг на один щелчок для увеличения хода штока камеры.

Рис. 6-33. Механизм регулировки зазоров между тормозными колодками и барабаном: 1 — пробка-фиксатор; 2 — ось червяка регулировочного рычага; 3 — контрольные отверстия.

Рис. 6-34. Схема установки педали на тормозной кран: 1 — установочный болт; 2 — регулировочный болт.

Регулировка положения педали рабочей тормозной системы (рис. 6-34).

Регулировкой установочного и регулировочного болтов необходимо обеспечить положение площадки педали под углом 35±2° и свободный ход педали 10-15 мм. Установочный болт зафиксировать контргайкой, регулировочный болт перед регулировкой покрыть герметиком УГ7.

Проверка работоспособности пневматического привода тормозной системы.

Проверка заключается в определении выходных параметров давления воздуха по контурам с помощью контрольных манометров и штатных приборов в кабине водителя (двухстрелочный манометр и блок сигнализаторов тормозной системы). Проверять нужно по клапанам контрольных выводов, установленных во всех контурах пневмопривода, и соединительным головкам.

Перед проверкой необходимо устранить утечки сжатого воздуха из пневмосистемы. В качестве контрольных технологических манометров надо использовать манометры с пределом измерений 0-1000 кПа (0-10 кгс/см 2 ) класса точности 1,5. Проверять работоспособность пневматического тормозного привода нужно в следующем порядке:

— заполнить пневмосистему воздухом до срабатывания регулятора давления. При этом давление во всех контурах тормозного привода и соединительной головке 40R питающей магистрали двухпроводного привода тормозных систем прицепа должно находиться в пределах 620-750 кПа (6,2-7,5 кгс/см 2 ), а в соединительной головке 41Р однопроводного привода-480-520 кПа (4,8-5,2 кгс/см 2 ). Сигнализаторы блока сигнализаторов тормозной системы должны погаснуть при достижении давления в контурах 450-550 кПа (4,5-5,5 кгс/см 2 ). Одновременно прекратит работу звуковой сигнал (зуммер);

— нажать полностью на педаль управления рабочей тормозной системой. Давление по двухстрелочному манометру в кабине водителя должно резко снизиться, но не более чем на 50 кПа (0,5 кгс/см 2 ), штоки тормозных камер должны выдвинуться. При этом давление в клапане С контрольного вывода контура привода тормозных механизмов колес переднего моста должно быть равно показанию верхней шкалы двухстрелочного манометра в кабине водителя. Давление в клапане D контрольного вывода контура привода тормозных механизмов колес промежуточного и заднего мостов должно быть равным показанию нижней шкалы двухстрелочного манометра, давление в соединительной головке 40N тормозной магистрали двухпроводного привода — равным 620-750 кПа (6,2-7,5 кгс/см 2 ), в соединительной головке 41Р соединительной магистрали — упасть до 0;

— установить рукоятку привода крана стояночной тормозной системы в горизонтальное положение. Давление в клапане Д контрольного вывода контура привода механизмов стояночной и запасной тормозных систем должно быть равным давлению в ресивере контура стояночной и запасной тормозных систем и находиться в пределах 620-750 кПа (6,2-7,5 кгс/см 2 ), давление в соединительной головке 40N тормозной магистрали двухпроводного привода — равным О, в соединительной головке 41Р — в пределах 480-520 кПа (4,8-5,2 кгс/см 2 );

— установить рукоятку привода крана стояночной тормозной системы в вертикальное фиксированное положение. На блоке сигнализаторов тормозной системы должен загореться сигнализатор стояночной тормозной системы в мигающем режиме, штоки тормозных камер механизмов промежуточного и заднего мостов должны выдвинуться; давление в клапане Д контрольного вывода и в соединительной головке 41Р должно упасть до 0, а в соединительной головке тормозной магистрали двухпроводного привода 40N должно быть равным 620-750 кПа (6,2-7,5 кгс/см 2 );

— нажать на кнопку крана 4 вспомогательной тормозной системы. Штоки пневмоцилиндров 17 управления заслонками механизма вспомогательной тормозной системы и пневмоцилиндра 7 привода рычага останова двигателя должны выдвинуться. В тормозных камерах прицепа, оборудованного электропневматическим клапаном, давление воздуха должно быть равным 60-70 кПа (0,6-0,7 кгс/см 2 ). При отсутствии клапана торможение прицепа не осуществляется.

В процессе проверки работоспособности пневматического тормозного привода при снижении давления в контурах до 450-550 кПа (4,5-5,5 кгс/см 2 ) должен включаться зуммер и должны загораться сигнализаторы соответствующих контуров на панели приборов в кабине.

Дополнительно весной (осенью):

— проверить состояние тормозных барабанов, колодок, накладок, стяжных пружин и разжимных кулаков при снятых ступицах, устранить неисправности;

— закрепить кронштейны ресиверов на раме.

Проверка состояния тормозных барабанов, колодок, накладок, стяжных пружин и разжимных кулаков. При обслуживании тормозного механизма следует обратить внимание на расстояние от поверхности накладок до головок заклепок. Если это расстояние менее 0,5 мм, сменить тормозные накладки. Надо предохранять накладки от попадания на них масла, так как фрикционные свойства промасленных накладок нельзя полностью восстановить очисткой и промывкой. Если требуется заменить накладки левого или правого тормозных механизмов, нужно менять все накладки у обоих тормозных механизмов (левого и правого колес). После установки новых фрикционных накладок колодку необходимо обработать. Для нового барабана радиус колодки должен быть 199,6-200 мм.

После расточки барабана при ремонте радиус колодки должен быть равен радиусу расточенного барабана. Барабаны допускается растачивать до диаметра не более 404 мм. Вал разжимного кулака должен вращаться в кронштейне свободно, без заеданий.

Ось червяка регулировочного рычага должна проворачиваться свободно, без заеданий. При необходимости следует вывернуть масленку из корпуса рычага, промыть внутреннюю полость бензином, просушить и заполнить регулировочный рычаг смазкой Литол-24.

Перед проверкой параметров пневматического привода тормозной системы нужно:

— затянуть болты крепления компрессора и гайки крепления головки цилиндров компрессора;

— слить конденсат из ресиверов;

— снять фильтр регулятора давления, промыть его керосином, высушить, продуть сжатым воздухом и установить на место;

— снять механизмы вспомогательной тормозной системы, очистить их внутренние поверхности от нагара, промыть в керосине, продуть сжатым воздухом и установить на место;

— осмотреть трубопроводы, шланги, чехлы тормозных камер и тормозного крана, привод тормозного крана; устранить неисправности.

Проверку надо проводить в соответствии с перечнем контролируемых параметров, приведенных в протоколе проверки параметров пневматического привода (табл. 6-2). Проверку проводить с помощью комплекта (рис. 6-35), включающего в себя: контрольные манометры 2 класса 1,5, соединительные шланги 1, соединительные головки 4, клапаны 5 контрольного вывода, набор штуцеров и уплотнительных шайб, набор 3 наиболее часто применяемых ключей (S=19×22 мм; S=24×27 мм).

В заключение необходимо проверить тормозные свойства автомобиля на тормозном стенде типа СТП-3.

Примечание: При отсутствии стенда эффективность тормозных систем автомобиля можно оценить дорожными испытаниями по специальной методике. В этом случае критерием эффективности является тормозной путь и поведение автомобиля на дороге.

Рис. 6-35. Комплект для проверки параметров пневматического привода: 1 — шланги соединительные; 2 — манометр контрольный; 3 — ключи; 4 — головки соединительные; 5 — клапаны контрольного вывода.

Критерием оценки эффективности тормозной системы является удельная тормозная сила Q, представляющая собой отношение суммарнойтормозной силы всех колес к весу автомобиля:

где: ST — суммарная тормозная сила всех колес автомобиля; Р — вес автомобиля.

Удельная тормозная сила должна быть не менее 5,49 (0,56) — при проверке рабочих тормозных механизмов; 2,75 (0,28) — при проверке запасной тормозной системы.

Кроме того, следует определить на стенде разность тормозных сил правого и левого колес одного моста. Разность не должна превышать 15%, (для приработанных тормозных накладок).

Погрешность показаний штатного двухстрелочного манометра определяется сравнением с показаниями контрольных манометров. Контрольные манометры надо подсоединить вместо резьбовых пробок к ресиверу контура I и к ресиверу контура II. Постепенно повышая, а затем, понижая давление в системе, сверить показания штатного и контрольных манометров.

Давление включения сигнализатора торможения нужно определить при номинальном давлении в системе контрольным манометром, который следует подсоединить к контрольному выводу N. Плавно нажимая на педаль рабочей тормозной системы, зафиксировать давление включения и выключения сигнализатора торможения по загоранию фонарей. Также определить давление включения и выключения сигнализатора торможения, плавно приводя в действие кран стояночной тормозной системы. Давление выключения (включения) сигнализаторов необходимо определить для всех контуров пневматического привода. Для этого подсоединить контрольные манометры к ресиверам всех контуров, пустить двигатель и довести давление воздуха в системе до номинального значения.

Медленно выпуская воздух (например, открыв кран слива конденсата) из ресивера контура I, зафиксировать на контрольном манометре давление загорания сигнализатора контура I. Так же определить давление выключения (включения) сигнализаторов контуров II, III, IV пневматического привода.

Регулятор давления в тормозной системе задних колес Hyundai County / Богдан A-069 с 1998 года

Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
нет тормозов Богдан A-069 , прокачка тормозов Богдан A-069 , схема тормозной системы Богдан A-069 , ремонт тормозной системы Богдан A-069 , неисправности тормозной системы Богдан A-069 , нет тормозов Hyundai Real , прокачка тормозов Hyundai Real , схема тормозной системы Hyundai Real , ремонт тормозной системы Hyundai Real , неисправности тормозной системы Hyundai Real , нет тормозов Hyundai County , прокачка тормозов Hyundai County , схема тормозной системы Hyundai County , ремонт тормозной системы Hyundai County , неисправности тормозной системы Hyundai County

Регулятор давления в тормозной системе задних колес

регулятор давления в тормозной системе задних колес Hyundai County, регулятор давления в тормозной системе задних колес Хюндай Коунти, регулятор давления в тормозной системе задних колес Hyundai Real, регулятор давления в тормозной системе задних колес Хюндай Реал, регулятор давления в тормозной системе задних колес Bogdan A-069, регулятор давления в тормозной системе задних колес Богдан А-069

  1. Регулятор давления тормозной системы задних колес.
  2. Винт клапана удаления воздуха.
  3. Кронштейн.
  4. Рычаг.
  5. Пружина измерительного устройства.
  6. Направляющая пружины.
  7. Регулировочная гайка.
  8. Управляющий рычаг.
  9. Тяги.

Снятие

1. Отсоедините трубку тормозной магистрали (А) от регулятора.

регулятор давления в тормозной системе задних колес Hyundai County, регулятор давления в тормозной системе задних колес Хюндай Коунти, регулятор давления в тормозной системе задних колес Hyundai Real, регулятор давления в тормозной системе задних колес Хюндай Реал, регулятор давления в тормозной системе задних колес Bogdan A-069, регулятор давления в тормозной системе задних колес Богдан А-069

2. Снимите крепёж регулятора.

При покупке книги в PDF

1. Вы сможете скачать книгу сразу же после оплаты.

2. Книга будет скачана в формате PDF, и Вы сможете загрузить ее на любое устройство.

1. Все книги идеального качества, так как мы работаем с издательствами напрямую.

2. Электронные книги ничем не уступают бумажным и являются их полным аналогом.

3. Офисы нашей компании представлены в Украине, России и Польше, вы всегда можете обратиться к нам по конкретному адресу.

4. Все оплаты на сайте максимально защищены и происходят с помощью мировых платежных систем.

Книга не предназначена для продажи в Вашей стране.

Оформить заказ на бумажную версию этой книги Вы можете на сайте autoinform96.com.

Оплата товара и скачивание книги в электронном виде (формат PDF) производится на сайте.

Читайте также  Поршень цилиндра тормозного

Для этого надо найти интересующую Вас книгу и нажать на кнопку «Купить». Цена книги указана на кнопке.

Для удобства, цена на сайте для жителей России, Беларуси и Казахстана представлена в рублях.

Для жителей Украины в гривнах, а для всех остальных стран — доллары.

После нажатия на кнопку «КУПИТЬ» Вам откроется окно оплат, где можно выбрать платежную систему, с помощью которой можно оплатить выбранную книгу с помощью любой банковской карты (Visa, MasterCard, МИР и т.д.)

При нажатии на кнопку «Оплатить банковской картой» откроется платежная система Portmone с помощью которой проще всего совершить оплату.

Кроме этого, на сайте для оплаты представлены четыре платежные системы:

  • Яндекс (оплата с любых банковских карт, аккаунта Яндекс Деньги, QIWI Wallet, терминалы и т.д.);
  • Portmone (оплата с любых банковских карт, аккаунта Portmone);
  • PayPal (оплата с любых банковских карт, аккаунта PayPal);
  • WebMoney (оплата с любых банковских карт, оплата с кошельков WebMoney).

Оплата через Яндекс Кассу

После выбора оплаты через Яндекс запустится платежная система Яндекс Касса, где требуется выбрать удобный способ оплаты (банковская карта, QIWI, аккаунт Яндекс Деньги и т.д.)

После указания платежных реквизитов и подтверждения платежа, произойдет оплата товара.

Если у Вас банковская карта в валюте, которая отличается от рубля, то списание денег с карты произойдет по курсу Центрального банка России на момент совершения покупки.

Данный способ оплаты оптимально подойдет для жителей России, Казахстана и Беларуси.

Официальный сайт платежной системы Яндекс Касса https://kassa.yandex.ru

Оплата через Portmone

После выбора оплаты через Portmone запустится платежная система, где требуется выбрать способ оплаты банковская карта или аккаунт Portmone.

Цена в платежной системе Portmone пересчитывается в доллар по курсу Центрального банка той страны, где Вы находитесь.

Если у Вас банковская карта в валюте, которая отличается от доллара, то списание денег с карты произойдет по курсу Центрального банка Вашей страны на момент совершения покупки.

После указания платежных реквизитов и подтверждения платежа, произойдет оплата товара.

Официальный сайт платежной системы Portmone https://www.portmone.com

Оплата через PayPal

После выбора оплаты через PayPal запустится платежная система PayPal, где требуется выбрать способ оплаты банковская карта или аккаунт PayPal.

Если у Вас уже есть аккаунт PayPal, то Вам необходимо зайти в него и осуществить платеж.

Если у Вас нет аккаунта в PayPal, и Вы хотите оплатить с помощью банковской карты через PayPal, Вам необходимо нажать на кнопку «Create an Account (Создать аккаунт)» — на рисунке показано стрелочкой.

После чего PayPal предложит вам выбрать Вашу страну и указать данные кредитной карты.

После указания данных, необходимых для осуществления платежа, надо нажать на кнопку «Pay Now (Оплатить)».

Официальный сайт платежной системы PayPal https://www.paypal.com

Оплата через WebMoney

После выбора оплаты через WebMoney запустится платежная система, где требуется выбрать способ оплаты банковская карта или кошелек WebMoney.

Если у Вас уже есть кошелек WebMoney, то Вам необходимо зайти в него и осуществить платеж.

Если у Вас нет кошелька WebMoney, и Вы хотите оплатить другим образом, Вам необходимо выбрать любой из способов, который предлагает WebMoney и осуществить оплату

После указания платежных реквизитов и подтверждения платежа, произойдет оплата товара.

Официальный сайт платежной системы WebMoney https://www.webmoney.ru/

Скачивание книги

После успешного прохождения платежа (любым способом) и возврата в магазин KrutilVertel с сайта платежной системы Вы попадаете на страницу успешной оплаты:

На этой странице Вам необходимо указать свой e-mail, куда будет выслан доступ для скачивания книги.

Если Вы уже зарегистрированы на нашем сайте, то просто перейдите по ссылке личный кабинет.

Купленная Вами книга будет находиться в Вашем личном кабинете, откуда ее всегда можно будет скачать.

Обратите внимание, что после совершения оплаты, Вам необходимо вернуться обратно с сайта платежной системы на сайт KrutilVertel.

В случае, если по каким либо причинам Вы не вернулись обратно на сайт и закрыли вкладку платежной системы с сообщением про успешное прохождение платежа, сообщите нам об этом — мы вышлем Вам письмо в котором будет указан доступ для скачивания книги.

Проблемы при оплате банковскими картами

Иногда при оплате банковскими картами Visa / MasterCard могут возникать трудности. Самые распространенные из них:

  1. На карте стоит ограничение на оплату покупок в интернет
  2. Пластиковая карта не предназначена для совершения платежей в интернет.
  3. Пластиковая карта не активирована для совершения платежей в интернет.
  4. Недостаточно средств на пластиковой карте.

Для того что бы решить эти проблемы необходимо позвонить или написать в техническую поддержку банка в котором Вы обслуживаетесь. Специалисты банка помогут их решить и совершить оплату.

Вот, в принципе, и все. Весь процесс оплаты книги в формате PDF по ремонту автомобиля на нашем сайте занимает 1-2 минуты.

Тормозные клапаны. Регуляторы давления.

Схемы включения и разрез типового тормозного клапана показаны на рис. 1.

Рис. 1. Схемы включения (а) и продольный разрез (б) тормозного клапана.

Тормозной клапан устанавливают на выходе из гидроцилиндра. Управление клапаном осуществляется от подводящей линии гидроцилиндра. Открытие клапана зависит от управляющего давления, обратно пропорционального внешней нагрузке. Вследствие этого скорость опускания груза остается примерно постоянной. Золотник, установленный в корпусе клапана, удерживается в положении "Закрыто" пружиной, усилие которой изменяется регулировочным винтом.

Для обеспечения устойчивой работы, исключающей колебания золотника клапана, в линии управления установлены два регулируемых дросселя с обратными клапанами, которые независимо один от другого дросселируют подводящий и отводящий потоки рабочей жидкости. Отдельные типы тормозных клапанов часто изготавливают стыкового исполнения с двумя ступенями давления. На клапаны первой ступени управляющее давление действует непосредственно под торец клапана, а на клапаны второй ступени — через дополнительный плунжер меньшего диаметра. Настройка клапана, характеризуемая началом открытия щели, осуществляется поворотом винта.

Рассмотрим устройство и принцип действия тормозного клапана, представленного на рис. 2.

При подаче давления управления рабочая жидкость поступает из полости подвода У в полость отвода А. Настройка требуемого давления управления, при котором происходит открытие дроссельной щели золотника 6, производитсярегулировочным винтом 1.

Тормозной клапан устанавливают на выходе из гидроцилиндраИсточник фото: drive2.ru Тормозной клапан устанавливают на выходе из гидроцилиндра

В зависимости от изменения давления в линии управления изменяется площадь открытия дроссельной щели в золотнике 6, благодаря чему изменяется величина потока рабочей жидкости и скорость движения рабочего органа остается примерно постоянной независимо от величины попутной нагрузки.

В этих гидроклапанах для исключения колебаний величины потока, проходящего через щель (рывка при спуске рабочего органа), и настройки, необходимой для конкретного изделия времени срабатывания золотника 6, в линии управления установлены два регулируемых дросселя с обратными клапанами.

Регулировка этих дросселей осуществляется винтами настройки времени 12 и 73. Торможение производится как при опускании, так и при подъеме рабочего органа. Для торможения только в одном направлении к тормозному гидроклапану должен присоединится обратный гидроклапан.

Открытие клапана зависит от управляющего давления, обратно пропорционального внешней нагрузкеИсточник фото: pneumax.ru Открытие клапана зависит от управляющего давления, обратно пропорционального внешней нагрузке

Поток рабочей жидкости из линии управления и дренажных отверстий может отводиться по трубам от присоединительной плиты или непосредственно от корпуса клапана. К тормозному клапану может прифланцовываться обратный клапан, соответствующей установкой которого определяют направление потока при торможении гидродвигателя — от А к В или от В к А. Если обратный клапан не установлен, то торможение осуществляется при обоих направлениях потока. К тормозному клапану может быть присоединен также дополнительный предохранительный клапан.

Тормозные клапаны указанных типов используют для торможения лебедок грузоподъемных механизмов и гидроцилиндров телескопических стрел гидравлических экскаваторов.

Рис. 2. Общий вид тормозного клапана.

1 — винт;
2 — стакан для пружины;
3 — пружина;
4, 7, 9, 10, 11 — кольцо;
5 — корпус;
6 — золотник;
8 — прокладка;
12 — винт настройки времени открытия клапана;
13 — винт настройки времени закрытия клапана;
А — подвод рабочей жидкости;
В — отвод;
L — дренаж;
У1 — подвод давления управления.

Для поддержания заданной оператором скорости перемещения рабочих органов, движущихся под действием попутной внешней нагрузки, и обеспечения фиксации положения рабочего оборудования в гидросистемах самоходных машин применяются клапаны патронного исполнения для встраивания в панели и индивидуальные корпуса.

Общий вид такого тормозного гидроклапана и его гидросхема представлены на рис. 3.

Рис. 3. Общий вид тормозного клапана патронного исполнения.

Гидроклапан тормозной представляет собой устройство, обеспечивающее разъединение подводящей А и отводящей В полостей при отсутствии давления управления в полости У и соединение их через регулируемый дроссель, величина проходного сечения которого зависит от величины давления управления. Клапаны можно устанавливать в гидросистеме в любом положении. При монтаже необходимо обеспечить свободный доступ к клапану, особенно к регулировочному винту.

Регуляторы давления

Регуляторы давления предназначены для ограничения скорости повышения давления в гидролиниях управления. Эти регуляторы используют в гидросистемах машин для ограничения давления относительно установленного. В комплекте с тормозным клапаном регуляторы давления обеспечивают плавность регулирования скорости исполнительных механизмов, например, при опускании грузов самоходными стреловыми кранами. В некоторых случаях регуляторы давления устанавливают в гидросистему для обеспечения выпуска из них воздуха. На рис. 4 приведены условные графические обозначения и общие виды регуляторов давления с резьбовым и фланцевым присоединением соответственно.

Рис. 4. Общий вид регуляторов давления с резьбовым (а) и фланцевым (б) присоединением.

Регуляторы давления состоят из корпуса 1 и стакана 6 предохранительного клапана, ввернутого в корпус 1. В корпусе 1 расположен также жиклер 2. Предохранительный клапан состоит из седла 3 (в котором выполнен жиклер) и затвора 4, на который действует усилие от пружины 5, направленное на седло. Полость за предохранительным клапаном представляет собой герметичный объем, заполненный рабочей жидкостью и сообщающийся с каналом Р (модель а) или с каналом У (модель б) через жиклеры 2.

В установившемся режиме работы затвор предохранительного клапана находится в закрытом положении, а давление в полости за клапаном равно давлению в канале Р (модель а) или в канале У (модель б). Жиклеры и объем заклапанной области по мнению разработчиков конструкции образуют реактивные гидравлические сопротивления.

При скачкообразном (резком) изменении давления в полостях Р или У происходит соответствующее изменение давления в заклапанной полости, но с некоторым запаздыванием, в течение которого затвор предохранительного клапана открывает отверстие в седле. Тем самым каналы Р или У кратковременно сообщаются со сливом, что обеспечивает столь же кратковременное падение давления в полостях Р или У соответственно.

Иногда регуляторы давления устанавливают в гидросистему для обеспечения выпуска из них воздухаИсточник фото: pneumax.ru Иногда регуляторы давления устанавливают в гидросистему для обеспечения выпуска из них воздуха

При включении регулятора давления в линию управления предохранительного клапана непрямого действия достигается уменьшение скорости нарастания давления в гидросистеме и, как следствие, минимальное превышение давления относительно установившегося в переходных режимах работы.

Для обеспечения плавного режима регулирования скорости рабочего органа при попутной нагрузке и минимального превышения установившегося давления при фиксации рабочего органа применяют блоки тормозных клапанов.

Источник:
Московский Государственный автомобильно-дорожный институт,
Министерство транспорта РФ, Главгостехнадзор России

Давление тормозной жидкости: максимальное значение, диагностика неисправностей

Давление тормозной жидкости: максимальное значение, диагностика неисправностей

На современных легковых автомобилях устанавливаются тормозные системы с замкнутым гидравлическим контуром. При нажатии на педаль тормоза давление тормозной жидкости поднимается до 100 атмосфер, что приводит в движение поршни в суппортах. Новые элементы тормозной системы способны выдерживать давление, в три раза превышающее указанное выше, но со временем они также изнашиваются.

Читайте также  Пневматическая система тормозов

Общая информация о давлении тормозной жидкости в системе

 Давление тормозной жидкости

Современные легковые автомобили комплектуются тормозными системами, включающими в себя тормозной гидропривод и тормозные механизмы. Сила, с которой вы нажимаете на педаль тормоза, передается на главный тормозной цилиндр. Главный тормозной цилиндр представляет собой поршень, при движении которого давление в тормозных трубках увеличивается и передается на каждое колесо автомобиля.

Давление тормозной жидкости воздействует на поршни тормозных механизмов всех колес, тормозные колодки выдвигаются и прижимаются к тормозному барабану или тормозному диску. Колеса замедляются за счет трения, и автомобиль сбавляет скорость.

Гидропривод основной тормозной системы включает в себя:

  • главный тормозной цилиндр с вакуумным усилителем или без него;
  • регулятор давления в задних тормозных механизмах;
  • рабочий контур (трубопровод диаметром 4–8 мм).

Рабочий контур соединяет между собой устройства гидропривода и тормозные механизмы. Главный тормозной цилиндр (ГТЦ) служит для преобразования силы нажатия на педаль тормоза в избыточное давление тормозной жидкости и дальнейшей передачи ко всем рабочим контурам. Запас тормозной жидкости находится в бачке, который расположен на ГТЦ или вне его. Помимо ГТЦ, многие автомобили укомплектованы вакуумными усилителями, увеличивающими силу, создающую давление в тормозной системе. Вакуумный усилитель связан с главным тормозным цилиндром конструктивно.

Тормозная система

Основной элемент усилителя – камера, которую разделяет резиновая перегородка (диафрагма) на две емкости. Одна из них связана с впускным коллектором двигателя, создающим разряжение, а вторая – с атмосферой. Перепад давлений и большая площадь диафрагмы создают усилие порядка 30–40 кг и больше при торможении. При использовании такой системы задача водителя при торможениях упрощается благодаря снижению физического воздействия на педаль, и он надолго остается в работоспособном состоянии.

Регулятор давления тормозной жидкости предназначен для уменьшения давления в приводе тормозных механизмов задних колес. Движущийся автомобиль при торможении подвергается воздействию двух сил: силы инерции и противоположно направленной силы трения, точка приложения которой находится ниже центра тяжести автомобиля, в результате чего возникает продольный опрокидывающий момент.

Передняя подвеска при этом проседает, а задняя разгружается. По этой причине в случаях, когда торможение не является экстренным, задние колеса могут блокироваться, что приводит к заносу автомобиля. Изменение расстояния между конструктивными частями задней подвески и кузовом автомобиля (продольный наклон) приводит к ограничению давления в приводе задних колес по сравнению с передними. В таком случае блокировки задних колес не происходит, или она возникает значительно позже (в зависимости от загруженности и замедления автомобиля).

Рекомендуем

Каково максимальное давление тормозной жидкости в системе

Необходимо разобраться с понятием давления в гидравлической системе и давления суппортов или штоков цилиндров на тормозные колодки.

Давление во всех элементах гидравлической системы автомобиля практически одинаковое, и его максимальное значение у современных машин составляет примерно 180 бар (или 177 атм). На спортивных и гражданских автомобилях значение давления достигает 200 бар.

Максимальное давление

Человек не может создать такого усилия только при помощи мышц ног.

Именно с этой целью в тормозной системе автомобиля предусмотрены вспомогательные механизмы:

  1. Рычаг педали. Конструкция педального узла спроектирована таким образом, что усилие, передаваемое водителем на педаль, повышается в 4–8 раз, и для каждой марки автомобиля эти цифры индивидуальны.
  2. Вакуумный усилитель. У этого узла коэффициент усиления кратен двум. Производятся различные конструкции усилителя с разнообразными значениями этого параметра.

В реальности рабочее давление тормозной системы в штатных условиях чаще всего не превышает 100 атмосфер. При экстренном торможении только физически крепкий водитель может создать давление в системе более 100 атмосфер, но такие случаи крайне редки.

Механическое воздействие на колодки суппортом и рабочими цилиндрами не равнозначно давлению в тормозной системе. Здесь принцип действия похож на ручной гидравлический пресс, где насос с цилиндром маленького сечения перекачивает жидкость в цилиндр с большим сечением. Коэффициент, который определяет усилие, равен отношению диаметров цилиндров.

Если рассмотреть тормозную систему ближе и сравнить диаметр поршня тормозного суппорта с поршнем главного тормозного цилиндра, то можно увидеть, что первый значительно больше. Благодаря этой разнице в диаметрах давление на тормозные колодки выше, чем на педали тормоза.

Рекомендуем

Чем опасно высокое давление тормозной жидкости в системе

Высокое давление тормозной жидкости в системе

Тормозная жидкость находится в системе в замкнутом контуре. При нажатии на педаль тормоза движение поршней в суппортах происходит за счёт давления, сила которого может достигать 100 и более атмосфер. В новом автомобиле, когда детали не имеют дефектов, система спокойно выдерживает даже в три раза повышенное давление. Но по мере износа во всех элементах развиваются деструктивные процессы, что неизбежно приводит к падению прочности всей системы.

Одним из самых слабозащищенных элементов тормозной системы являются шланги и магистрали, которые подвергаются воздействию внешней среды. Шланги со временем теряют свою механическую прочность и трескаются, иногда уже через несколько лет. Сталь, которая используется для изготовления тормозных трубок, подвергается коррозии. Все перечисленные случаи не имеют явных признаков неисправностей, а значит, водитель подвергается повышенному риску.

И это не шутки! Коррозия быстро распространяется и ослабляет стенки трубки. При незначительных нажатиях на педаль тормоза такие дефекты никак себя не проявляют. Но в случае экстренного торможения это может обернуться трагедией. Разрыв магистрали приводит к резкому падению давления, и торможение происходит неэффективно. Проблема усугубляется тем, что тормозные трубки находятся в таких труднодоступных местах, что даже на поднятом с помощью домкрата автомобиле оценить их состояние очень сложно.

Тормозные трубки

Водители в повседневной жизни очень редко жмут на педаль тормоза с силой, а значит, неисправности тормозной системы можно определить только при техническом осмотре автомобиля. Специалисты ежедневно обнаруживают подобные дефекты. По их мнению, трещины на шлангах – реальная проблема огромного масштаба. Поэтому, если после диагностики вашего автомобиля выявлены неисправности тормозных магистралей, не стоит это игнорировать. При малейшем подозрении на дефекты тормозной системы рекомендуется заменить элементы, представляющие опасность.

В течение долгого времени тормозные системы авто представляли собой два контура, отвечающих за две пары колес соответственно. Применение такой системы позволяет затормозить автомобиль одним из контуров при неисправности другого.

Было проведено множество испытаний, на которых проверялась эффективность торможения при работе только одного контура. В результате было выявлено, что в тормозной путь автомобиля при скорости 100 км/ч в среднем увеличивается с 40 до 86 метров!

Значит, при неисправности какого-либо элемента тормозной системы остановить автомобиль возможно, но не стоит забывать о том, что это будет происходить дольше в два раза.

Разрыв тормозных трубок случается без каких-либо предпосылок, которые помогли бы выявить проблемный элемент. Тормозная система продолжает работать, но менее эффективно. Следовательно, единственным вариантом подстраховки является постоянная диагностика, в особенности при проведении ТО. Автомеханики, имеющие большой опыт работы, всегда посоветуют вам, как лучше поступить, и не стоит игнорировать их рекомендации, особенно по поводу тормозной системы.

Стоимость ремонта тормозных линий разнится в зависимости от типа и длины. Обычно замена какого-либо элемента с учетом его стоимости обходится в 20–50 долларов. Большинство сервисов предпочитает устанавливать медные трубки взамен стальных, так как их проще дорабатывать. Проверка состояния тормозных шлангов и трубок должна стать вашей привычкой, даже если вы счастливый владелец нового автомобиля.

Рекомендуем

Диагностика давления тормозной жидкости и тормозной системы

Диагностика давления тормозной жидкости

Усовершенствование конструкции тормозных систем привело к тому, что список неисправностей вырос, а диагностика стала более трудоемкой. Как бы там ни было, большинство неполадок владелец в состоянии выявить сам и устранить их еще на начальных стадиях развития. Ниже приведен список неисправностей и следствий их возникновения.

1. Снижение эффективности системы в целом

  • Изношенные тормозные диски и/или тормозные колодки (несоблюдение сроков ТО).
  • Недостаточные фрикционные свойства тормозных колодок (повышенные температуры в тормозных механизмах, применение запчастей ненадлежащего качества и т. д.).
  • Выработка колесных или главного тормозного цилиндров.
  • Неисправный вакуумный усилитель тормозов.
  • Повышенное или, наоборот, заниженное давление в шинах.
  • Применение колес большего диаметра, чем рекомендует завод-изготовитель автомобиля.

2. Проваливание педали тормоза (или слишком мягкая педаль тормоза)

  • Излишки воздуха в тормозной системе.
  • Вытекание тормозной жидкости, что грозит опасными последствиями, которые способны проявляться вплоть до отказа тормозов. Причиной может служить выход из строя одного из тормозных контуров.
  • Повышение температуры тормозной жидкости, которое может привести к ее закипанию (жидкость ненадлежащего качества или несвоевременная замена).
  • Неправильная работа главного тормозного цилиндра.
  • Дефект рабочих (установленных на колесах) тормозных цилиндров.

3. Слишком тугая педаль тормоза

  • Неправильная работа вакуумного усилителя или подходящих к нему шлангов.
  • Старение элементов тормозных цилиндров.

4. Уход автомобиля в сторону при торможении

  • Тормозные колодки и/или тормозные диски стираются неравномерно (элементы установлены неправильно; поврежден суппорт; дефект тормозного цилиндра; поверхность тормозного диска повреждена).
  • Некорректная работа или повышенный износ одного или нескольких тормозных цилиндров, установленных на колесах (тормозная жидкость или запчасти ненадлежащего качества либо износ деталей в процессе длительной эксплуатации).
  • Не работает один из тормозных контуров (наличие воздуха в тормозных трубках и шлангах).
  • Протектор на шинах изнашивается неравномерно. Такое происходит из-за нарушения установочных углов колес (сход-развала) автомобиля.
  • Разное давление в передних и/или в задних колесах.

5. Вибрация при торможении

  • Дефект тормозных дисков. Причиной является перегрев при экстренном торможении на больших скоростях.
  • Неисправность колесного диска или шины.
  • Нарушение балансировки колес.

6. Посторонний шум при торможении (может проявляться как скрежет или скрип тормозных механизмов)

Регуляторы давления предназначены для автоматического поддержания давления воздуха в главных резервуарах локомотивов в заданных пределах. Они или включают и отключают компрессоры или переводят их в режим холостого хода.

Регулятор давления 3РД

Регулятор давления ЗРД используется на тепловозах с приводом компрессора от дизеля. Регулятор давления (рис. 3.15.) состоит из корпуса 9, в котором находятся два винтовых стержня 5 с фасонными гайками 8, контргайками 7 и регулировочными пружинами 4 и 10. Выступы фасонных гаек помещаются в вертикальном пазу корпуса 9, что исключает их вращение на винтовых стержнях 5.

Пружина 4 упирается в выключающий клапан 3, а пружина 10 — во включающий клапан 11. Нижняя торцовая поверхность клапанов 3 и 11 выполнена комбинированной — в виде рабочей и срывной (кольцевой) площадей. Клапаны 3 и 11 имеют возможность вертикального перемещения в направляющих (гнездах) 2 и 12. В направляющую 12 ввернуто седло 13 подпружиненного обратного клапана 1. Внутренняя полость корпуса регулятора перегородками разделена на три камеры: выключающего клапана (левая), главного резервуара (средняя) и включающего клапана (правая). В средней камере корпуса расположен фильтр 6 с набивкой из конского волоса.

Читайте также  Электрический стояночный тормоз

Пружина 4 выключающего клапана регулируется на давление 8,5 кгс/см2, а пружина 10 включающего клапана — на 7,5 кгс/см2.

Регулировка усилия пружин 4 и 10 осуществляется вращением винтовых стержней 5. При этом фасонные гайки 8, перемещаясь в вертикальном направлении, изменяют усилие затяжки пружин. Давление переключения на холостой ход регулируется вращением левого винтового стержня 5, а на рабочий ход — правого стержня. После регулировки стержни 5 закрепляются контргайками 7.

К нижней части корпуса (привалочной плите) присоединены трубки с резьбой 12" от главного резервуара (ГР) и с резьбой диаметром ¼" от разгрузочных устройств компрессора (РУК), установленных на всасывающих клапанах. На корпусе регулятора имеется атмосферный выход (Ат).

Регулятор давления 3РД

Рис. 3.14 Регулятор давления ЗРД

1-обратный клапан, 2, 12- направляющие, 3- выключающий клапан, 4, 10 — пружины, 5- винтовой стержень, 6- фильтр, 7- контргайка, 8- фасонная гайка, 9- корпус, 11-включающий клапан, 13- седло обратного клапана

При работе компрессора под нагрузкой сжатый воздух из ГР проходит в среднюю часть регулятора давления, откуда через фильтр 6 поступает под выключающий клапан 3, воздействуя на его рабочую площадь, и к обратному клапану 1. В этот момент камера включающего клапана, трубопровод РУК к разгрузочным устройствам компрессора и. следовательно, полость над диафрагмой 14 (рис. 3.4.) сообщены с атмосферой через отверстие Ат. При повышении давления в ГР до 8,5 кгс/см2 выключающий клапан 3 отойдет от своего седла вверх. При этом давление воздуха распространяется на большую (срывную) площадь клапана, что вызывает четкий его подъем. Открытие выключающего клапана 3 обеспечивает проход воздуха под включающий клапан 11, который также открывается (поднимается вверх), поскольку его пружина отрегулирована на давление 7,5 кгс/см2. Включающий клапан, упираясь в верхнюю торцовую часть направляющей (гнезда) 12, разобщает правую камеру регулятора от канала РУК. При этом канал РУК перестает сообщаться с атмосферой, а правая камера регулятора продолжает сообщаться с Ат.

Поднявшись вверх, включающий клапан 11 обеспечивает проход воздуха из ГР в канал РУК через ранее открывшийся выключающий клапан 3 и освобождает обратный клапан 1, который своей пружиной поднимается вверх (открывается) и тоже начинает пропускать воздух из ГР в канал РУК, и одновременно по нижнему горизонтальному каналу в привалочной части — в камеру (левую) выключающего клапана. Повышенное давление в левой камере регулятора совместно с пружиной 4 обеспечивают посадку на седло (закрытие) выключающего клапана 3. При таком положении клапана 3 воздух в канал РУК будет проходить только через открытый обратный клапан 1.

Из канала РУК воздух проходит в полость над диафрагмой 14 (рис. 3.4.) разгрузочных устройств компрессора. При этом диафрагма 14 прогибается вниз и воздействует на поршень 13, который, преодолевая усилие пружин 12 и 10, перемещает вниз стержень 11 и упор 9. Последний своими пальцами отжимает от седла клапанные пластины всасывающих клапанов и удерживает их в этом (открытом) положении. Компрессор переходит в режим холостого хода, при котором ЦНД засасывают воздух из атмосферы и выталкивают его обратно через всасывающие фильтры, а ЦВД всасывает воздух, оставшийся в холодильнике, и выталкивает его обратно в холодильник.

После понижения давления в ГР до 7,5 кгс/см2 пружина 10 опускает на седло включающий клапан 11, который перемещает вниз (закрывает) обратный клапан 1. При этом перекрывается доступ воздуха из ГР к разгрузочным устройствам компрессора, а камера выключающего клапана и канал РУК сообщаются с камерой включающего клапана и далее с Ат. Сжатый воздух из полости над диафрагмой разгрузочных устройств выходит в атмосферу через регулятор давления. При этом пружина 10 (рис. 3.4.) отжимает вверх упор 9, а пружина 12 — поршень 13. Клапанные пластины всасывающих клапанов своими коническими пружинами прижимаются к седлам и компрессор вновь переходит в рабочий режим.

На двухсекционных тепловозах регулятор давления, управляющий работой компрессоров обеих секций, включается только на одной секции, а на другой отключается перекрытием разобщительных кранов на трубопроводах, сообщающих его с ГР и разгрузочными устройствами.

Регулятор давления АК-11Б˜

Регулятор давления АК-11Б применяется на подвижном составе с приводом компрессора от электродвигателя.
Регулятор давления (рис. 3.16. а) состоит из пластмассового основания (плиты) 6 с фланцем 4 и кожуха 10. Между фланцем и основанием помещена резиновая диафрагма 3. На плите 6 укреплены кронштейн 9 с винтом 11, неподвижный контакт 8, две стойки 17 с металлической планкой 14 и пластмассовая набавляющая 19. В основание помещен пластмассовый шток 1, который одним концом упирается в резиновую диафрагму 3, а другим — в регулировочную пружину 18, которая, в свою очередь, упирается в пластмассовую планку 16. На металлической планке 14 имеется винт 15, вращением которого можно перемещать планку 16, и тем самым изменять затяжку пружины 18. Рычаг 13 имеет две оси: подвижную 2, проходящую через шток 1, и неподвижною 5 в направляющей 19. К рычагу 13 с помощью пружины 7 прижат подвижный контакт 12.

Рис. 3.16 а — Регулятор давления АК-1Б

1- шток, 2- подвижная ось, 3- резиновая диафрагма, 4- фланец, 5- неподвижная ось, 6- основание (плита), 7, 18- пружины, 8- неподвижный контакт, 9- кронштейн, 10- кожух, 11, 15- винты, 12- подвижный контакт, 13- рычаг, 14, 16 -планки, 17- стойка, 19- направляющая

На электровозах регулятор давления регулируется на выключение электродвигателя компрессора при давлении в ГР 9,0 кгс/см2 и на включение при давлении в ГР 7,5 кгс/см2, а на электропоездах соответственно на 8,0 кгс/см2 и 6,5 кгс/см2. При отсутствии давления в ГР детали регулятора занимают положение, изображенное на рис. 3.16 б. Под усилием регулировочной пружины 18 шток 1 находится в крайнем левом (по рисунку) положении, а пружина 7 расположенная под углом α = 9° к неподвижной оси 5 рычага 13, надежно прижимает подвижный контакт 12 к неподвижному контакту 8, то есть цепь питания электродвигателя компрессора замкнута. При повышении давления в ГР шток 1 вместе с подвижной осью 2 начинает перемещаться вправо, а рычаг 13 поворачивается вокруг неподвижной оси 5. При таком перемещении угол α начинает уменьшаться, и как только он станет равен нулю, то есть при совпадении оси пружины 7 с осью подвижного контакта 12, система займет неустойчивое положение (рис. 3.16. б).

При дальнейшем незначительном перемещении штока 1 пружина 7 резко перебросит подвижный контакт 12 с неподвижного контакта 8 на винт 11 (рис. 3.16. в), то есть произойдет разрыв электрической цепи электродвигателя компрессора.

Давление выключения компрессора (размыкания контактов регулятора давления) регулируют винтом 15 за счет изменения затяжки пружины 18, воздействующей на шток 1.Чем больше усилие пружины 18, тем при большем давлении в ГР произойдет размыкание контактов регулятора. Один оборот винта 15 изменяет давление приблизительно на 0,4 кгс/см2.

Рис. 3.16 б — Работа регулятора давления АК-1Б

Давление включения компрессора, точнее перепад давлений включения и выключения компрессора, зависит от величины раствора контактов «С», который может изменяться винтом 11. Чем меньше раствор контактов, тем при большем давлении в ГР включается компрессор. Так при С=5 мм разница давлений включения и выключения составит около 1,4 кгс/см2, при С=15 мм — 1,8 -2,0 кгс/см2

Регулятор давления ТSР-2В (ТSР -11)

Регулятор давления ТSР-2В применяется на пассажирских электровозах ЧС чешского производства. Принцип действия регулятора аналогичен работе регулятора АК-11Б.

Сжатый воздух из ГР через штуцер 1 попадает внутрь сильфона 2 (рис. 3.17.), который через упор 3 воздействует на рычаг 4. Рычаг 4 имеет неподвижную опору 5 и нагружен пружиной 13 с регулировочным винтом 12.

Рис. 3-17 — регулятор давления TSP-2B
1- штуцер, 2- сильфон, 3- упор, 4- рычаг, 5- опора рычага, 6, 12- регулировочные винты, 7- контакты, 8- толкатель, 9, 11, 13- пружины, 10- пластина

При давлении в ГР 9 кгс/см2 пружина 13 сжимается, вследствие чего рычаг 4 поворачивается относительно опоры 5 (по рисунку — против часовой стрелки) и пружина 11 перебрасывает пластину 10 в верхнее положение. Пластина 10 воздействует на толкатель 8 и размыкает две пары контактов 7, в результате чего электрическая цепь электродвигателя компрессора разрывается и компрессор выключается.

Когда давление в ГР понизится до 7,5 кгс/см2, пружина 13 повернет рычаг 4 (по рисунку — по часовой стрелке) и сожмет сильфон 2, в результате чего пружина 11 перебросит пластину 10 в нижнее положение. Усилием пружины 9 обе пары контактов 7 замкнутся, собрав электрическую цепь питания электродвигателя компрессора — компрессор включится.

Давление выключения компрессора регулируется винтом 12 за счет изменения усилия пружины 13, а давление включения — винтом 6, за счет изменения величины хода пластины 10

Устройство холостого хода компрессора

Регулировочный клапан усл.№ 525Б, клапан холостого хода усл.№ 527Б и обратный клапан усл.№ 526 входят в устройство, обеспечивающее автоматическую работу компрессоров ПК-3,5 и ВП 3-4/9 (рис. 3.18.)

Рис. 3.18 Устройство холостого хода компрессора

1- корпус клапана холостого кода, 2- корпус регулировочного клапана, 3, 9 — поршни, 4- клапан холостого кода, 5- обратный клапан, 6- корпус обратного клапана, 7-регулировочная пружина, 8- каналы.

Устройство обеспечивает сообщение нагнетательного трубопровода (ПМ) компрессора с главными резервуарами (ГР) в режиме рабочего хода и с атмосферой (Ат) в режиме холостого хода.

Регулировочный клапан собран в корпусе 2, клапан холостого хода — в корпусе 1, обратный клапан — в корпусе 6.

При закрытом клапане 4 холостого хода сжатый воздух от компрессора (К) через обратный клапан 5 поступает в ГР. Полость под поршнем 3 сообщена с атмосферой через нижний канал 3 в корпусе 2. При достижении в ГР величины давления, на которую отрегулирована пружина 7, поршень 9 перемещается вправо (по рисунку), разобщая полость под поршнем 3 от атмосферы и через верхний канал 8 открывая ее сообщение с нагнетательным трубопроводом (ПМ). Поршень 3 перемещается вверх и открывает клапан 4 холостого хода, вследствие чего воздух из компрессора (К) уходит в атмосферу (Ат). Одновременно обратный клапан 5 закрывается своей пружиной и перекрывает выход воздуха в атмосферу из ГР.

При снижении давления в ГР до определенной величины поршень 9 регулировочного клапана возвращается пружиной 7 в исходное положение, сообщая полость под поршнем 3 с атмосферой через нижний канал 8 в корпусе 2. При этом клапан 4 холостого хода своей пружиной прижимается к седлу, а сжатый воздух от компрессора через обратный клапан 5 начинает поступать в ГР.Разница давлений рабочего и холостого хода компрессора обеспечивается изменением затяжки регулировочной пружины 7.

Анимация (мультик) по схемам прямодействующего, непрямодействующего тормоза и ЭПТ. Для скачивания проги кликните по картинке

Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242.
С анимацией и дикторским сопровождением. Для скачивания PDF кликните по картике

Крылов Автоматические тормоза

Справочник по тормозам

Локомотивные устройства безопасности

Асадченко автоматические тормоза

Афонин автоматические тормоза

АВТОМАТИЧЕСКИЕ ТОРМОЗА ПОДВИЖНОГО СОСТАВА

Весь электронный учебник по автотормозам можно скачать одним архивным файлом ЗДЕСЬ

Понравилась статья? Поделиться с друзьями: