Тормоза

Тормоз легкового автомобиля

Тормоз легкового автомобиля

Как работают тормоза в автомобиле: Объяснение

Наверное, многим водителям знакома ситуация, когда, например, на дорогу неожиданно выбегает собака, кошка или любое другое животное. Согласитесь очень неприятный момент. Ведь у нас есть всего доля секунды, чтобы отреагировать на ситуацию. В этот момент большинство из нас, наверное, нажмут педаль тормоза, и мы будем уверенные в том, что машина мгновенно начнет останавливаться. Но почему мы уверены в тормозах? Как работает тормозная система в автомобиле? Давайте узнаем, как тормоза, используя науку, останавливает тяжелую машину.

Наука останавливаться

Перед вами парашютный тормоз снижает скорость и кинетическую энергию, для того чтобы катапультировавшийся летчик благополучно приземлился на землю.

Если вы двигаетесь у вас есть энергия — кинетическая энергия, если быть точным. Кинетическая энергия — это просто энергия, которой обладает объект, поскольку он имеет массу и скорость (скорость в определенном направлении). Чем больше у вас массы (чем тяжелее) и чем быстрее вы двигаетесь, тем больше у вас есть кинетической энергии.

Все это конечно хорошо. Но что делать, если вам вдруг нужно остановиться? Как же перейти от быстрого движения к тому, чтобы не двигаться вообще. Для этого вам необходимо избавиться от своей кинетической энергии.

Например, если вы прыгаете с высоты из летящего самолета, то лучший способ потерять энергию — это парашют. Благодаря гигантскому мешку ткани, который летит за вами, замедляет вас, уменьшая скорость и следовательно парашют помогает избавиться от вашей кинетической энергии.

В результате парашют позволяет вам спокойно приземлиться на землю целым и невредимым.

Кстати, мощные драгстер автомобили, которые являются рекордсменами по разгону с места, а также спорткары умеющие разгонятся до рекордных скоростей, также используют для остановки парашюты. Но большинство обычных автомобилей, как вы знаете, используют для остановки и снижения скорости традиционную гидравлическую тормозную систему, которая была изобретена еще в начале 20 века.

Разные тормоза для различных видов транспорта

В автомобилях, грузовиках, самолетах и поездах тормоза в целом работают в принципе одинаково. Также в мире существует множество других видов транспорта, которые также имеют похожий принцип торможения. Тормоза даже есть в ветровых турбинах. Вот краткое сравнение некоторых распространенных тормозных систем.

Велосипед

Если вы катаетесь на велосипеде вы знаете, что, разогнавшись, вам нечего бояться, так как когда вы захотите остановиться, вы воспользуетесь тормозом, предусмотренном в любом велотранспорте. Обычно для этого вы зажимаете тормозной рычаг на руле и велосипед начинает снижать скорость за счет того, что металлический трос, идущий от тормозного рычага, тянет небольшие суппорты, расположенные на колесе, заставляя толстые резиновые блоки прижиматься к колесу. В этот момент создается трение между тормозными резиновыми блоками и металлическим ободом колеса. В результате трения создается тепло и уменьшается кинетическая энергия вашего велосипеда. В итоге вы безопасно останавливаетесь.

Паровоз

Тормоза на паровозе работают, так же как и в автомобиле. На фотографии вы можете видеть тормоз. Он зажимает ведущие колеса локомотива, чтобы замедлить их. Но как же поезд останавливается, если на колесах нет шин? Ведь для остановки необходимо трение, в том числе и дорожной поверхностью?

Все просто. Так как локомотив имеет огромную массу, а его колеса не имеют резины трение создается именно из-за огромного веса, который давит на колеса, прижатые к металлическим рельсам. В результате трения металлических колес с металлическими рельсами также образуется большое количество тепла, которое и снижает кинетическую энергию двоящегося локомотива.

Мотоцикл

Мотоциклы обычно имеют дисковые тормоза, которые содержат тормозные диски, суппорт и тормозные колодки. Тормозной диск, как правило, имеет отверстия (или пазы). Принцип работы тормозов в мотоцикле прост: тормозная колодка, зажимается с помощью тросика, который, как и в велосипеде, может идти на рулевое колесо или на ножную педаль. Как только мотоциклист зажимает педаль тормоза или тормозной рычаг тросик прижимает колодки к тормозному диску. Отверстия в тормозном диске помогают рассеивать выделяемое тепло при трении.

Самолет

Самолеты имеют тормоза внутри своих колес. Это помогает остановить самолет на взлетно-посадочной полосе. Также в авиатехнике могут использоваться воздушные тормоза, которые увеличивают сопротивление воздуха, что в итоге и замедляет самолет во время полета. В том числе самолет может тормозить и за счет обратной тяги двигателей, если пилот включит реверс.

Ветровая турбина

Как мы уже сказали ветровые турбины также имеют тормозную систему. Она необходима, чтобы предотвращать слишком быстрое вращение роторов (пропеллеров). У большинства ветровых турбин есть анемометр, который измеряет скорость ветра. Если скорость ветра поднимается выше безопасного уровня, автоматически активируется тормоз, который и приводит к замедлению вращения пропеллеров, либо к их полной остановке.

К сожалению, высокие скорости ветра означают, что можно было бы получить больше энергии. Но безопасность всегда главнее.

Более детальный взгляд на автомобильные тормозные системы

Ранние автомобильные тормоза были удивительно примитивны по сегодняшним меркам. Вот простая система с трением 1910 года, изобретенная американцем Джоном Ставарцем.

Когда вы нажимаете на рычаг тормоза (обозначен на картинке желтым цветом), под заднее колесо (обозначено коричневым цветом) заезжает огромная тормозная колодка (синего цвета).

По сути, автомобиль садится на колодку-башмак, зубья которого сцепляются с дорожной поверхностью, в результате чего машина начинает замедляться и в конечном итоге остановится.

Большинство автомобилей имеют два или три разных типа тормозных систем. Обратите внимание на передние колеса вашей машины. За колесным диском вы увидите тормозные диски. Когда водитель нажимает педаль тормоза, с двух сторон тормозного диска зажимаются тормозные колодки из износостойкого материала.

В результате трения колодок с тормозными дисками образуется тепло, также снижается кинетическая энергия автомобиля, который в итоге начинает замедление. Как видите, тот же принцип, как и в мотоциклах и даже в велосипедных тормозах.

У некоторых автомобилей дисковые тормоза есть и на задних колесах. Но у многих автомобилей до сих пор на задних колесах установлены барабанные тормоза, которые работают несколько иначе. Вместо диска в таких тормозах используется тормозной барабан, внутри которого в полой области установлены также тормозные колодки, которые с помощью пружин и тормозных цилиндров при нажатии водителем педали тормоза прижимаются к поверхности барабана.

Ручной тормоз автомобиля тормозит задние колеса. Ручной тормоз активируется с помощью ручника расположенного внутри машины. Правда, по сравнению с нажатием педали тормоза, ручной тормоз менее эффективный и менее сильный.

У ускоряющего автомобиля есть масса энергии и когда вы активируете тормоза (неважно какие — барабанные, дисковые или ручной тормоз), то эта энергия превращается в тепло в результате трения тормозных колодок с барабанами или тормозными дисками.

Естественно из-за сильного трения барабаны и тормозные диски могут нагреваться до 500 °C и более! Вот почему барабаны или диски должны быть сделаны из таких материалов, которые не будут плавиться при высоких температурах. Например,для изготовления тормозных дисков, барабанов и тормозных колодок идеально подходят дорогие сплавы металлов, композиты или керамика.

Как работают тормоза в автомобиле

Картинка описание: Когда ваша нога нажимает педаль тормоза, тормозная жидкость в тормозной системе выжимается из узкого цилиндра в более широкий цилиндр. Эта система известна как гидравлическая система. Это позволяет значительно увеличить силу тормозного вашего усилия.

Теория.

Представьте себе, сколько вам нужно сил, чтобы остановить быстроходную машину. Простое нажатие педали тормоза не создало бы достаточной силы, чтобы активировать все четыре тормоза так, чтобы быстро остановить ваш автомобиль. Вот почему тормоза используют гидравлику: систему заполненных тормозной жидкостью трубок, которые и увеличивают ваше тормозное усилие. Также благодаря гидравлике тормозные усилия могут передаваться легко из одного места в другое за короткий срок.

Когда вы нажимаете на педаль тормоза, ваша нога, по сути, перемещает рычаг, который заставляет сдвинуть поршень в длинном узком тормозном цилиндре (главный тормозной цилиндр), который в свою очередь начинает двигать гидравлическую жидкость (тормозная жидкость) в сторону узкой трубки расположенной на конце тормозного цилиндра.

К этой трубке, как правило, подключены такого же диаметра трубки, идущие на каждый тормоз автомобиля. Далее тормозная жидкость по узким трубкам попадает в более объемные цилиндры, расположенные на колесах.

Поскольку тормозные цилиндры, расположенные на каждом колесе, намного больше, чем цилиндр, расположенный в тормозной системе сразу после педали тормоза, сила, которую вы изначально применили к педали тормоза, значительно увеличивается. В результате эта сила и сжимает тормозные колодки в каждом тормозе колеса.

На практике.

  1. 2. Когда педаль движется вниз, она толкает рычаг, который соединен с поршнем главного тормозного цилиндра.
  1. 3. Рычаг толкает поршень (синий на картинке) в узкий цилиндр, который заполнен гидравлической тормозной жидкостью (обозначена красным цветом). Когда поршень перемещается в цилиндре, он сжимает тормозную жидкость и толкает ее в узкое отверстие, расположенное в конце цилиндра, к которому подсоединена трубка. Это происходит примерно так же, как ручной насос выжимает воздух из цилиндра в тонкий шланг.
  1. 4. В результате образовавшегося давления тормозная жидкость попадает в длинную тормозную магистраль, состоящую из тормозных трубок, которые подходят к каждому колесу. В результате нагнетенного давления главным тормозным цилиндром, тормозная жидкость в итоге достигает каждого колеса.
  1. 5. Далее жидкость под давлением попадает в тормозные цилиндры, расположенные в колесах, которые имеют больший размер, чем главный тормозной цилиндр (цилиндр в колесе обозначен, синим цветом).
  1. 6. Когда жидкость попадает в тормозной цилиндр, имеющий больший объем по сравнению с главным тормозным цилиндром, то сильно увеличивается тормозное усилие из-за разницы объемов цилиндров в тормозной системе.
  1. 7. В результате увеличенного давления жидкости поршень в тормозном цилиндре колеса зажимает тормозную колодку, прижимая ее к тормозному диску / барабану.
  1. 8. В результате трения тормозной колодки и тормозного диска начинается замедление колесного диска, что в конечном итоге и останавливает машину.

Наш простой пример показывает основной принцип работы гидравлической тормозной системы; на практике все немного сложнее.

На самом деле педаль тормоза фактически управляет четырьмя отдельными гидравлическими тормозными линиями, идущие на все четыре колеса. В нашем же примере мы показываем принцип работы тормозов на одном колесе автомобиля.

Для безопасности, как правило, во всех автомобилях используется два отдельных контура гидравлических тормозов. Это необходимо на тот случай, если вдруг из-за каких-то неисправностей вышел из строя один тормозной контур. В этом случае второй контур всей тормозной системы будет по-прежнему функционировать.

Читайте также  Срок службы тормозной жидкости

Кто изобрел гидравлические тормоза?

Гидравлические тормоза изобрел Малькольм Лугхед из Детройта, штат Мичиган, США в 1919 году. Выше вы можете видеть его улучшенную конструкцию гидравлической тормозной системы — середина 1920-х годов.

Эта система использует импульс (движущую силу) транспортного средства, чтобы обеспечить необходимое тормозное усилие для остановки машины. Эта сила толкает гидравлический поршень в цилиндре. Это первый в мире тормоз с электроприводом. То есть при нажатии педали тормоза поршень в цилиндре двигался не только за счет силы нажатия педали, но и благодаря движущейся силе транспорта.

Лугхэд и его брат Аллан были пионерами в авиастроении. Они основали компанию «Лугхед», известную как авиационное производственное предприятие.

Система ABS в машине: как она работает и как помогает при экстренном торможении

В современном автомобиле есть много систем, которые делают его более безопасным и помогают водителю им управлять.

Инженеры постоянно улучшают их и придумывают новые, уже есть машины с полноценным автопилотом. Но одной из первых систем безопасности была антиблокировочная система тормозов — ABS. Эта статья расскажет, какую проблему решает ABS, как она работает и почему может испугать.

Как работают тормоза современного автомобиля

Когда водитель нажимает на педаль тормоза, давление жидкости в тормозной системе повышается. Через металлические трубки и шланги жидкость подходит к тормозным механизмам в колесах и вынуждает колодки прижиматься к тормозному диску или барабану.

Между педалью и колодкой в системе есть много устройств: главный тормозной цилиндр, распределяющий усилия между всеми колесами автомобиля, и вакуумный усилитель, который позволяет водителю давить на педаль с меньшим усилием.

Чем страшна блокировка колес при торможении

Если водитель нажимает на педаль достаточно сильно, то тормозного усилия хватит для полной блокировки колес: машина «пойдет юзом» — колеса остановятся, а автомобиль продолжит движение по инерции. На асфальте останутся яркие черные следы, на покрышках появится локальный износ: они могут сильно пострадать и даже прийти в негодность. Представьте себе, как изнашивается стирательная резинка — с шиной произойдет почти то же самое.

Если водитель продолжит давить на тормоз, то рано или поздно полностью потеряет контроль над автомобилем. С заблокированными передними колесами не получится изменить траекторию движения, даже если повернуть руль до упора. Такая ситуация опасна и для водителя, и для других участников движения. Система ABS борется именно с этим явлением: она предотвращает блокировку колес при торможении и позволяет сохранить контроль над автомобилем в момент экстренного торможения.

Курс о больших делах

Как устроена ABS

Как и многие решения в автопроме, система пришла из авиации. Первые опытные образцы полностью механической системы появились в 1920-х годах. Автомобили с механической антиблокировочной системой появились в 1960-х , но развития она не получила, потому что была очень громоздкой и ненадежной. Первую электронную ABS разработали инженеры «Фиата», позже патент продали компании «Бош».

С 2004 года систему в обязательном порядке ставят на все новые автомобили, которые продают на территории Евросоюза, а с 2012 года такое правило заработало и в США.

Система состоит из нескольких элементов.

Датчики скорости вращения колес. Чтобы бороться с блокировкой колеса эффективно, система должна отслеживать эту скорость и срабатывать в нужный момент. За это отвечают специальные датчики, установленные на каждом колесе, а точнее — на ступице. Они отслеживают вращение по специальному магнитному кольцу.

На более старых машинах датчики могут быть импульсными и считывать скорость по специальным зубчатым кольцам, такой вариант менее точный. Полученную информацию датчики передают в блок управления ABS.

Блок управления — микросхема в специальном корпусе. На основе информации с датчиков блок управления ABS определяет, какое колесо близко к блокировке и где нужно уменьшить давление в тормозной системе.

Насос и клапаны — органы управления системы. При срабатывании системы участие водителя уже не требуется: с помощью открытия и закрытия клапанов, объединенных в одном корпусе, ABS уменьшает и увеличивает давление в тормозной системе до 20 раз в секунду. А значит, меняется тормозное усилие на колесах и они не блокируются. Насос ABS работает только в момент активации системы и позволяет быстро восстановить давление в системе.

Главная задача ABS

Благодаря этой системе колеса автомобиля не блокируются и водитель сможет им управлять, даже выжав педаль тормоза «в пол». Автомобиль с работающей ABS реагирует на поворот руля, пусть и с некоторой задержкой. Так можно избежать ДТП или минимизировать его последствия, а заодно снизить скорость и увернуться от препятствия.

Представим, перед водителем кто-то резко оттормаживается. Автомобиль без ABS пойдет по инерции строго прямо, как бы водитель не крутил руль. Автомобилем с ABS можно как-то управлять, и самое главное — тормозной путь будет сильно короче, а значит будет больше шансов не догнать чужую машину. Даже если это случится, повреждения будут менее критичными и за ремонт удастся заплатить гораздо меньше.

Но в некоторых случаях тормозной путь машины с ABS может быть длиннее. Например, если машина на летней резине зимой, если под колёсами песок, земля или неприкатанный снег.

Разные виды антиблокировочных систем, их развитие

Первые антиблокировочные системы были одноканальными и работали только на одной оси автомобиля: работали одновременно и одинаково влияли на оба колеса оси. Актуальные системы поддерживают четыре канала, по одному на каждое колесо, каждый может работать независимо.

Дальнейшее развитие — дополнение, система распределения тормозных усилий (EBD). Она работает не только при экстренном торможении и контролирует распределение тормозных усилий задолго до блокировки колес. C EBD автомобиль стабилен при торможении, это особенно заметно, если под колесами разное покрытие. Например, если левые колеса на асфальте, а правые на льду, система поможет избежать заноса или сноса.

Если добавить в ABS и EBD датчики положения рулевого колеса, дроссельной заслонки и поперечного ускорения, у машины появится система стабилизации. В зависимости от производителя автомобиля и возможностей ее называют ASR, ESP, DSC, VDC или как-то еще.

В основе лежит тот же принцип — система анализирует разницу в скоростях вращения колес, но не только. Блок управления системой также анализирует угол поворота руля, положение педалей газа и тормоза, поперечное ускорение и другие параметры. На основе этих данных одно или несколько колес могут притормозить благодаря клапанам в блоке ABS. Это поможет стабилизировать автомобиль и выйти из заноса.

Как пользоваться ABS и быть готовым к тому, что она сработает

Система не требует от водителя каких-то особых навыков. Он просто оценивает дорожную ситуацию и нажимает на педаль. Тем не менее ABS может испугать неопытного водителя: когда система работает на педали тормоза, будет сильная вибрация. Это работают насос и клапаны, которые регулируют давление в разных частях тормозной системы.

Автомобилем, у которого сработала ABS, управлять сложнее. Реакции на поворот руля очень замедленны и менее точны. Водителю нужно понимать, что при торможении с ABS рулить нужно с опережением. Если рядом нет других автомобилей или препятствий — поверните руль сильнее, чем при обычной езде.

Если ваш опыт вождения скромный, то лучше познакомиться с ABS заранее. Для этого подойдет пустая парковка или площадка с асфальтовым покрытием — эксперименты с ABS на неровных грунтовых дорогах и площадках не дадут нужного опыта. Выполните несколько экстренных торможений — резко нажимайте педаль тормоза до упора. Начните с торможения с 30 км/ч, потом увеличьте скорость. Помните о безопасности и ПДД.

Когда экстренное торможение по прямой будет уже понятным, попробуйте тормозить с ABS и маневрировать. Желательно повторить эти упражнения в разных погодных условиях: на сухом асфальте, на мокром и зимой, на снежном и ледяном покрытиях. Это не сделает вас профессиональным водителем, но даст понимание, как ведет себя автомобиль при резком торможении и чего ждать от системы ABS. Однажды эти знания могут спасти как минимум бампер.

Конструкция тормозной системы легкового автомобиля

Конструкция тормозной системы легкового автомобиля

Тормозные системы для легковых и легких коммерческих автомобилей должны соответ­ствовать требованиям различных директив и предписаний — например, ЕСЕ R13-H, а в Германии — §41 StVZO (Правила регистрации автомобилей). В них изложены требования к функционированию и методам ис­пытаний. Вот о том, какова конструкция тормозной системы легковых автомобилей, мы и поговорим в этой статье.

Вся тормозная система делится на рабочую, стояночную и запасную.

Рабочая тормозная система легкового автомобиля

Рабочая тормозная система в легковых и лег­ких коммерческих автомобилях обычно кон­струируется в виде системы с дополнитель­ным источником энергии. Сила передается через два независимых гидравлических кон­тура (рис. «Тормозная система с двумя гидравлическими контурами и ABS» ).

Тормозная система с двумя гидравлическими контурами и ABS

В случае сбоя, например, течи или по­вреждения трубопровода, работающая часть системы должна сохранять способность до­стижения как минимум эффекта запасного торможения с той же управляющей силой на устройстве управления. Должна обеспе­чиваться возможность измерения эффекта запасного торможения, которое, в свою очередь, должно составлять не менее 50% (ЕСЕ R13H) или 44% (§41 с. 4а). Автомобиль не должен выезжать за пределы своей по­лосы при задействовании запасного тормоза.

Управляющее устройство легкового автомобиля

Вакуумный усилитель

При задействовании рабочего тормоза мускуль­ная сила ноги водителя воздействует на педаль тормоза. Усилителем тормозов это действие усиливается. Усилители тормозов (рис. «Вакуумный усилитель» ) рабо­тают за счет вакуумного либо гидравлического привода. Вакуумный усилитель тормозов полу­чает из впускного трубопровода или от отдель­ного вакуумного насоса. Гидравлическое усиле­ние тормозов производится от гидроусилителя или от отдельного гидравлического насоса и аккумуляторов давления.

Нажатие педали передается на рычаг и уси­ливается в усилителе тормозов в зависимости от его конструкции, в 4-10 раз и воздействует на поршень в главном тормозном цилиндре (рис. «Главный тормозной цилиндр с центральным клапаном во втором контуре» ). Управляющее усилие преобразуется в гидравлическое давление. При полном тормо­жении это давление варьируется в диапазоне от 120 до 180 бар, в зависимости от конструкции системы.

Главный тормозной цилиндр с центральным клапаном во втором контуре

Передающее устройство (тормозной привод) легкового автомобиля

Гидравлическое давление передается тор­мозной жидкостью по тормозным трубо­проводам стандарта DIN 74243 и тормозным шлангам стандарта SAE J 1401 в тормоз­ные цилиндры колес. Тормозная жидкость должна соответствовать требованиям стан­дарта SAEJ 1703 или FMVSS 116.

Колесные тормоза легкового автомобиля

На передних колесах обычно используются дисковые тормоза с плавающим суппортом, но могут использоваться также дисковые тор­моза с фиксированным суппортом. На задних колесах используются либо дисковые тормоза с плавающим суппортом со встроенным меха­низмом блокировки, либо барабанные тормоза Simplex (см. «Колесные тормоза»). На задних колесах также можно использовать сочетания дисковых тормозов с барабанными Duo-Duplex (система «барабан в головке»), в этом случае барабанный тормоз Duo-Duplex, размещаемый в камере тормозного диска, используется ис­ключительно для системы стояночного тор­моза. Устройство управления стояночным тор­мозом может иметь конструкцию в виде рычага ручного тормоза или педали ножного тормоза с механизмом блокировки. Сила передается с помощью тросиков или системы рычагов на колесные тормоза на задней оси, а в редких случаях и на переднюю ось. В случае электро­механических стояночных тормозных систем тормоз приводится в действие с помощью электрического выключателя (см. «Электро­механическая стояночная тормозная система»).

Читайте также  Рабочий тормозной цилиндр газ

Регулятор тормозного усилия, гидравлический модулятор ABS

Между главным тормозным цилиндром и колес­ными тормозами расположен гидравлический модулятор ABS или системы динамической ста­билизации и, в зависимости от объема функций, регулятор тормозного усилия. Эти компоненты, ограничивая и адаптируя тормозное давление в основном на задней оси, обеспечивают адек­ватное распределение тормозных сил между пе­редней и задней осями. Эта функция, особенно у автомобилей с заметно разными режимами нагрузки, может выполняться в зависимости от нагрузки (автоматическое измерение тормоз­ных сил в зависимости от нагрузки).

Гидравлический модулятор изменяет тормозное давление во время торможения таким образом, чтобы предотвращать бло­кирование колес. В зависимости от режима управления эта операция выполняется не­сколькими электромагнитными клапанами и электрическим насосом. В тормозных си­стемах легковых автомобилей управление передней осью осуществляется отдельно, т.е. каждое колесо тормозится соответственно сцеплению с дорогой. Управление задними колесами осуществляется по принципу наи­меньшего сцепления, т.е. оба колеса тормо­зятся с усилием, соответствующим колесу с наименьшим сцеплением с дорогой (см. также «Антиблокировочная система и си­стема динамической стабилизации»).

Электромеханическая тормозная система

Стояночная тормозная система — это неза­висимая тормозная система, которая должна удерживать автомобиль в неподвижном со­стоянии после полной остановки даже при отсутствии водителя в автомобиле. Требова­ния к эффектам торможения и удержания в неподвижном состоянии изложены в RREG 71/320 ЕСЕ R13H и §41 с. 5 и 9. Эффект удержания в неподвижном состоянии вычис­ляется согласно ЕСЕ R13H на уклоне у авто­мобиля с полной загрузкой. Угол уклона для автомобилей без прицепа составляет 18%. У автомобиля с прицепом эффект удержания в неподвижном состоянии должен достигаться с расторможенным прицепом на уклоне 12%.

Традиционные стояночные тормозные системы являются мускульными и работают чисто механически — это блокируемые руч­ные и педальные тормоза с кривошипно-ша­тунным механизмом. В электромеханических стояночных тормозных системах, также на­зываемых автоматическими стояночными тормозами, управляющее (рабочее) усилие создается электроприводом. Включение и управление осуществляются с помощью электрического выключателя. Электромеха­нический стояночный тормоз можно вклю­чать только при неподвижном состоянии автомобиля или на скорости до 10 км/ч. Это также должно быть возможно при выключен­ном зажигании и выключателе пуска. Если электрическая стояночная тормозная система задействуется на скорости более 10 км/ч, то сначала выполняется экстренное торможение системой динамической стабилизации.

Электрическая стояночная тормозная система

Прилагаемое усилие зависит от угла уклона, на котором стоит автомобиль. Для этой цели устанавливается датчик угла на­клона, в зависимости от системы, в ЭБУ элек­тромеханического стояночного тормоза или системы динамической стабилизации. Под­тягивание тормоза, обусловленное охлаж­дением механических компонентов тормоза, выполняется согласно расчетной температур­ной модели или после обнаружения движе­ния автомобиля.

Необходимо предусмотреть концепцию без­опасности для предотвращения случайной активации системы из-за электрической не­исправности или активации системы детьми. Кроме того, намеренная активация (аварий­ное торможение, необходимое только в слу­чае отказа устройства управления рабочей тормозной системы) электромеханического стояночного тормоза не должна приводить к критическим ситуациям. Если рабочий орган электромеханического стояночного тормоза осознанно задействуется на постоянной основе, то система динамической стабили­зации берет на себя функцию торможения автомобиля на скорости выше 10 км/ч. Это обеспечивает оптимально безопасное тор­можение даже в критических ситуациях. Электромеханический стояночный тормоз активируется только после падения скорости автомобиля ниже определенного порога. Си­стемы сообщаются между собой по каналу связи CAN.

Электрические стояночные тормозные си­стемы могут также включать в себя дополни­тельные функции, такие как автоматическое торможение (например, при открывании двери) или автоматическое отпускание тор­моза при трогании с места.

Электрические стояночные тормозные системы — это системы с дополнительным источником энергии и оснащаются устрой­ством аварийного отпускания. Электрическое управление должно быть реализовано таким образом, чтобы можно было предотвратить случайное торможение во время езды. Кроме того, должна обеспечиваться возможность активации системы даже при выключенном зажигании и пусковом выключателе, и си­стема может быть разблокирована только при включенном зажигании и пусковом вы­ключателе и одновременном нажатии на пе­даль тормоза.

Самодиагностика выявляет сбои и неис­правности и сигнализирует о них с помощью сигнализатора. На информационном дисплее водителя может также появляться текстовое сообщение. Диагностические коды в ЗУ неис­правностей можно считать с помощью диа­гностического тестера и очистить из памяти после устранения неисправностей.

Диагностические тестеры и соответствую­щее ПО могут потребоваться для работ по обслуживанию, например, при замене тор­мозных колодок.

Электромеханический стояночный тормоз с серводвигателем на тормозном суппорте

Электромеханический стояночный тормоз с серводвигателем состоит из следующих ком­понентов (рис. а, «Электрическая стояночная тормозная система» ):

  • Рабочий блок, ЭБУ, дисплей и сигнализи­рующие устройства;
  • Датчик угла наклона (может устанавли­ваться в системе динамической стабили­зации);
  • Плавающий суппорт с электродвигателем и многоступенчатым приводом.

В случае, когда суппорт оборудуется сер­водвигателем, сила для создания эффекта стояночного тормоза передается через мно­гоступенчатый редуктор и вал с резьбой. Он активируется электрическим выключателем (рабочий орган), отправляющим команды управления на ЭБУ в соответствии с кон­цепцией безопасности. ЭБУ, с учетом других граничных условий (например, уклона), акти­вирует электрические серводвигатели по про­водам через отдельные задающие каскады. Очень высокое передаточное число означает, что можно создать очень большие силы. Эти силы составляют приблизительно 15-20 кН и соответствуют силе, прилагаемой при созда­нии номинального гидравлического давления в гидравлической секции тормоза.

Электромеханический стояночный тормоз с тросами

В случае электромеханического стояночного тормоза с тросами в центрально размещае­мый блок — над задней осью, в пассажирском отсеке или в бампере — входят следующие компоненты (рис. Ь, «Электрическая стояночная тормозная система» ):

  • Электропривод с редуктором;
  • Необходимые датчики, в зависимости от объема функций — например, силы, угла наклона, температуры и датчиков положения;
  • ЭБУ;
  • Тросовый механизм, при необходимости с устройством аварийного отпускания.

Эта система также активируется с помощью электрического выключателя, отправляю­щего управляющие команды на ЭБУ. ЭБУ активирует электрический серводвигатель или серводвигатели через задающий каскад. Прилагаемая сила зависит от угла уклона. Система автоматически подтягивает трос при остановке автомобиля либо после фазы охлаждения в соответствии с температурной моделью, либо после выявления перемеще­ния автомобиля.

Тормоза автомобилей и правильное торможение с системой ABS или без

автомобильные тормоза

Тормоза в автомобиле предназначены для замедления и остановки. Большинство водителей привыкли пользоваться тормозами просто – чем сильнее нажимаешь на педаль, тем сильнее тормозишь. Вместе с тем, более глубокое умение пользоваться тормозами может спасти от многих неприятных ситуаций на дороге и не только в плане предотвращения аварий, для сохранения целостности автомобиля, а самое главное для сохранения жизни и здоровья водителя и пассажиров.

Для начала стоит разобраться, какими тормозами оборудованы автомобили, которые ездят по современным дорогам. По типу конструкции, тормоза могут быть дисковыми и барабанными. В давние времена существовала также конструкция ленточного тормоза, однако ее применение на современных автомобилях в качестве тормозного механизма, замедляющего автомобиль, не встречается. Однако такой тормоз используется в иных областях техники, в том числе, автомобильной. Например, ленточный тормоз используется на многих российских внедорожных грузовых автомобилях в качестве устройства для предотвращения самопроизвольного разматывания механической лебедки. Но вернемся к обычным автомобильным тормозам.

Восемь преимуществ дисковых тормозов перед барабанными

Барабанные тормоза обычно ставят на заднюю ось автомобилей недорогих моделей. Этот тип тормоза способен создавать значительное тормозное усилие при очень небольших размерах, что дает ему преимущество в стоимости. Однако такие механизмы срабатывают достаточно резко, а тормозные усилия в них возникают с определенной разницей, как по времени, так и по величине усилия. Поэтому применение их на передней оси можно встретить крайне редко. Обычно такие тормоза на передней оси встречаются на грузовых автомобилях. Из легковых автомобилей с такими тормозами на передней оси можно найти разве что некоторые УАЗы до 2003 — 2005 годов выпуска.

Дисковые тормоза работают гораздо мягче и четче барабанных, однако для создания таких же тормозных усилий им необходим больший диаметр, что делает их несколько более громоздкими. Однако важно отметить, что дисковые тормоза имеют целый ряд преимуществ перед тормозами барабанными, такие как:

  1. техническое обслуживание требуется реже;
  2. тормозная способность данных тормозов не снижается при перегревах, так как охлаждение дискового тормоза эффективнее, чем барабанных;
  3. поверхность трения больше чем у барабанных тормозов;
  4. сопротивление к воздействию воды и загрязнениям выше;
  5. дисковые тормоза срабатывают быстрее, чем барабанные;
  6. эпюра давления в дисковом тормозе равномерней, что служит равномерному изнашиванию накладки;
  7. повышенная чувствительность при торможении;
  8. учитывая выше сказанное, тормозной путь с дисковыми тормозами уменьшается по статистике на 20%, а это очень важный показатель.

Но и есть минусы, в частности, на автомобилях УАЗ при переходе от барабанных тормозов к дисковым, пришлось увеличить диаметр колесного диска с 15 до 16 дюймов для того, чтобы дисковым тормозам хватило места.

Правильное торможение автомобиля с системой ABS

Тормозная система автомобиля может быть снабжена антиблокировочной системой (ABS). Данная система предотвращает блокировку колес при экстренном торможении и при торможении на скользкой дороге. Следовательно, самым важным преимуществом автомобилей с установленной ABS – это предотвращение заноса автомобиля при торможении, а соответственно это самое важное в работе данной системы, так как в случае отсутствия заноса машины, водитель не теряет управление транспортным средством. На деле, при нажатии на педаль тормоз, в случае, когда колесо начинает блокироваться, эта система принудительно немного отпускает тормоз, что водитель чувствует обратными ударами по педали тормоза.

Следует немного сказать про правильное торможение с системой ABS. И приведём некоторые правила при торможении с данной системой:

  • наверняка каждый владелец автомобиля, особенно при покупке первого автомобиля при торможении будет чувствовать удары и характерный треск во время торможения, поэтому этого бояться не надо и следует продолжать торможение до желаемого результата.
  • ни в коем случае не надо бить по педали ногой, а осуществлять нажатие на педаль необходимо по возможности плавнее и нарастающе;
  • во время экстренного торможения с ABS не думайте о тресках и стуках в педаль, а подруливайте (не резкими движениями), избегая столкновений. И если взять Руководства по эксплуатации на автомобили с ABS, то производители говорят, что при экстренном торможении нужно с силой нажать на педаль, удерживать и не на мгновение не ослаблять усилие.

Торможение в зависимости от ситуаций и условий эксплуатации

Правильное использование тормозов – залог безопасной езды. В повседневных торможениях при подъезде, например, к светофору, торможение лучше начинать заранее. Часто, видя светофор еще вдалеке и понимая, что на нем придется остановиться, имеет смысл подкатываться к нему по инерции. Тогда большая часть энергии движения автомобиля будет погашена вообще без участия тормозов, что значительно сохранит их ресурс.

В зимнее время на скользких дорожных покрытиях лучше тормозить, не отключая двигатель от колес. Особенно это актуально для автомобилей без ABS. В данном случае, следует нажать на тормоз, не нажимая сцепление – и таким образом начать торможение. Сцепление же следует выжать только в тот момент, когда обороты двигателя упадут почти до холостых. В эти подробности можно не вдаваться владельцам автомобилей с АКПП любых конструкций. Вообще в зимнее время применять торможение нужно плавнее и еще более заблаговременно, чем летом. Стиль езды зимой должен принципиально меняться на более плавный.

В случае с экстренным торможением, есть принципиальная разница, оборудована машина системой ABS, или нет. В случае отсутствия системы ABS, водителю самому нужно будет ловить тот момент, когда колеса сорвутся в юз. В данном случае, необходимо надавить на педаль тормоза до начала блокировки колес, после чего часто прерывисто немного отпускать и снова нажимать педаль, позволяя колесам немного проворачиваться. Тормозить с ABS с одной стороны проще, но с другой стороны, в этом есть определенная психологическая трудность. Необходимо нажать на педаль до упора – до того момента, как она начнет вибрировать. В этот момент многие люди рефлекторно немного отпускают педаль. Этого делать не надо. Держите педаль нажатой до полной остановки. Если педаль перестает вибрировать – торможение не максимальное. Дожмите педаль до устойчивой работы системы ABS. Проще говоря – нажмите на тормоз со всей силы и держите до полной остановки. В этом случае, ABS, вопреки расхожему мнению, способна даже сократить тормозной путь по сравнению с тормозной системой без нее.

Отдельной темой для рассмотрения является торможение внедорожников на пересеченной местности. Особенно, на спусках. Система ABS на бездорожье будет только мешать, поэтому если автомобиль не оборудован системой помощи при спуске, будет полезным сделать возможность принудительного отключения ABS для внедорожной езды, если это не предусмотрено на автомобиле с завода. В частности, на песчаном спуске для полной остановки часто просто необходимо заблокировать колеса, чтобы они врылись в песок и создали перед собой небольшие песчаные горки. Также при движении в сыпучем песке или рыхлом снеге, торможение с полной блокировкой колес гораздо более эффективно, чем простое торможение. Вообще, на бездорожье, чаще всего, заблокированное колесо начинает врываться в грунт, тем самым создавая значительное тормозное усилие.

Вывод.

Тормоза – одна из тех систем автомобиля, которые обеспечивают вашу безопасность и безопасность остальных участников дорожного движения. Помимо их исправности, за которой, безусловно, необходимо тщательно следить, на безопасность также влияет готовность водителя правильно воспользоваться тормозами в той или иной ситуации на дороге. Данная статья дает всего лишь первоначальное представление о том, как правильно использовать тормоза. Для того чтобы почувствовать машину и научиться эффективно тормозить, лучше всего почувствовать и понять этот процесс собственноручно на специальной площадке.

Торможение легкового транспортного средства. Часть 1.

Торможение легкового транспортного средства. Часть 1. Гидравлика, Вакуумный усилитель тормозов, Главный тормозной цилиндр, Тормозная система, Тормоз, Длиннопост

Тормозная система большинства ТС приводится гидравлическим способом.
Краткий обзор гидравлической системы:
Большой ход педали тормоза приводимой мускульным усилием ноги человека, составляющим к примеру, 50 кгс (килограмм-сил) по принципу рычага преобразуется в малый ход поршней главного тормозного цилиндра с усилием кратно большим соотношению между большим и коротким плечами.
Если длина плеча рычага от точки приложения силы до оси педали тормоза – 400 мм (зелёный отрезок), а от оси педали до оси толкателя – 80 мм (красный отрезок), значит 50 кгс превратятся в 50 кгс * 400 мм / 80 мм = 50*5 кгс = 0,25 тонн-сил.

Однако такого усилия всё ещё недостаточно для эффективного торможения, поэтому используется вакуумный усилитель тормозов:

Торможение легкового транспортного средства. Часть 1. Гидравлика, Вакуумный усилитель тормозов, Главный тормозной цилиндр, Тормозная система, Тормоз, Длиннопост

В исходном состоянии в передней и задней камерах создаётся разрежение (давление ниже атмосферного), для чего из вакуумного усилителя высасывается воздух. У атмосферного двигателя для этого используется всасывающая сила поршней двигателя и разрежение берётся от впускного коллектора. У турбированного двигателя разрежение создаётся вакуумным насосом.
Камеры связаны между собой вакуумным каналом.
Задняя камера дополнительно связана с атмосферой атмосферным каналом.
При нажатии на педаль тормоза каналы перекрываются, либо закрываются следящим клапаном.

Перед началом торможения:
– вакуумный канал открыт;
– атмосферный канал закрыт;

– давление в передней и задней камерах одинаково и почти равно нулю (разрежение);

– поэтому результирующее воздействие на диафрагму отсутствует.

При нажатии на педаль тормоза:
– вакуумный канал перекрывается;
– атмосферный канал открывается;

– в заднюю камеру поступает атмосферный воздух;

– между передней и задней камерами создаётся разница давлений;
– возникшая разница давлений смещает диафрагму пропорционально силе нажатия на педаль тормоза, после чего атмосферный и вакуумный каналы перекрываются (логика работы следящего клапана реализована чисто механически).
– система приходит в стабильное состояние, повышенное давление в задней камере с большой силой сдвигает диафрагму, а диафрагма, помогая ноге водителя, воздействует на поршни главного тормозного цилиндра.

Если в этот момент водитель ослабит нажатие на педаль тормоза
вакуумный канал откроется до тех пор пока
– разница давлений между передней и задней камерой не измениться пропорционально усилию на педали тормоза, после чего
– вакуумный канал опять закроется и система снова придёт в стабильное состояние.

Если водитель усилит нажатие на педаль тормоза
откроется атмосферный канал и
– разница давлений между передней и задней камерой повысится пропорционально усилию на педали тормоза, после чего
– атмосферный канал закроется.

При нажатии педали тормоза в пол атмосферный канал полностью открывается, а вакуумный полностью закрывается.
При этом между передней и задней камерами разница давлений примерно в 1 атмосферу, тоесть в 1 кгс/см². Много это или мало? У меня дома как раз лежит разобранный усилитель от BMW N42. Измерил диаметр его диафрагмы – 25 см.
Площадь диафрагмы – 490, 8739 см². Пусть 0,8739 – это паразитная площадь штоков диафрагмы (для удобства).
Положим, что эффективность вакуумного насоса, позволяет создать в передней камере разряжение до 0,1 атмосферы (1 кгс/см²). Отсюда, разница давлений – 1 — 0,1 = 0,9 кгс/см².
490 см * 0,9 кгс/см² = 441 килограмм-сила. Намного большее усилие чем способен создать человек.

В случае отказа вакуумного усилителя тормозов из-за выхода из строя следящего клапана, повреждения вакуумной магистрали, или банального выключения двигателя, водитель сможет тормозить только используя собственную мускульную силу.


Главный тормозной цилиндр
(ГТЦ) конструктивно состоит из двух поршней в одном цилиндре.
Так сделано для увеличения надёжности системы: тормозная жидкость, нагнетаемая одним поршнем приводит тормозные механизмы только двух колёс из четырёх, например, левого переднего и правого заднего, а вторым — правого переднего и левого заднего.
В случае отказа одного из контуров из-за разгерметизации, машина будет тормозить только одним передним и одним задним колесом.

Давление в тормозной гидравлике.
Диаметр поршней ГТЦ в среднем составляет 1 дюйм (2,54 см, для большинства авто), отсюда площадь поршня – 5.0671 см², или ровно 5 см² (отбросим 0,6 см² на площадь штока).
При максимальном усилии на педали тормоза в 50 кгс и использовании вакуумного усилителя от BMW N42, на эти 5 см² придётся воздействие 250 кгс + 441 кгс = 691 кгс.
Максимальное давление составит 691 кгс / 5 см² = 138 кгс/см².
На практике, максимальное давление в тормозной гидравлике большинства автомобилей составляет 100 кгс/см². У более продвинутых ТС оно может достигать 150 кгс/см² благодаря тому что помимо вакуумного усилителя, ноге также помогает насос ESP (ABS). Насос ESP может и больше, 150 кгс/см² – чисто электронное ограничение по достижении которых открывается перепускной клапан.

Ход педали тормоза.
Как я уже написал выше, большой ход педали тормоза преобразуется в малый ход поршней ГТЦ.
Давление тормозной жидкости вырастает до максимального не мгновенно, а после того как:
– Выдвинутся поршни тормозных механизмов и прижмут колодки к тормозному диску;
Деформация тормозных магистралей, а также колодок, поршней суппорта и самого суппорта не уравновесится с давлением. Несмотря на то что все перечисленные элементы выполнены из металла, такое большое давление достаточно чувствительно.

Чем больше площадь поршней ГТЦ, тем больший объём тормозной жидкости они вытеснят за равную длину хода, но тем большее усилие воздействия на шток понадобится для создания требуемого давления жидкости.
С другой стороны, чем меньше площадь поршней ГТЦ — тем меньшее усилие воздействия на шток необходимо для развития требуемого давления, но в то же время потребуется бОльший ход поршней (и педали), для того чтобы вытеснить необходимый объём жидкости.

Пример для наглядности:
Чтобы создать требуемые 100 кгс/см² с поршнем площадью 5 см², требуется 500 кгс на штоке.
Чтобы создать требуемые 100 кгс/см² с поршнем площадью 2,5 см², требуется 250 кгс на штоке.

Однако, если за ход длиной 2 сантиметра, поршень 5 см² вытеснит аж 10 см³, то поршню площадью 2,5 см² для того же объёма вытесненной жидкости понадобится в два раза больший ход (4 см).

Длинноходовая и короткоходовая педаль тормоза.
Чем больше площадь поршней ГТЦ – тем меньше ход педали тормоза и тем выше комфорт водителя, так как для торможения не требуется размашистое движение ногой, однако тем сложнее дозировать тормозное усилие.

Чем меньше площадь поршней ГТЦ – тем больше ход педали тормоза и тем легче водителю дозировать усилие на ней (ценой снижения эргономичности).
Как правило, на гражданских автомобилях используются короткоходовые ГТЦ, а на спортивных – длинноходовые.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button