Двигатель

Почему чаще всего вода используется для охлаждения двигателей

Почему чаще всего вода используется для охлаждения двигателей

Почему вода расширяется при замерзании?

Когда вода замерзает, ее молекулы выстраиваются в кристаллическую структуру, тем самым приобретая определенную форму. Эта кристаллическая структура менее плотная, и поскольку между отдельными молекулами в структуре есть промежутки, общий объем увеличивается, и вода «расширяется».

С беглого взгляда фраза «вода расширяется, когда она замерзает» может не иметь смысла, потому что в жидкой форме вода не имеет определенной формы или очертаний и поэтому, кажется, занимает больше места. Кроме того, когда вода замерзает, она принимает четко определенную форму, которая кажется совершенно противоположной «расширению».

Действительно ли вода расширяется при замерзании?

Да, вода расширяется при замерзании. Обратите внимание, что слово «расширяется» в этом предложении означает увеличение объема. Поэтому технически правильно было бы сказать так: объем воды увеличивается при замерзании.

Это утверждение является точным, и вы можете проверить его правомерность с помощью простого эксперимента: если вы снизите температуру воды, вы заметите, что объем воды уменьшается, поскольку она становится все более и более «нетронутой».

Вы можете обратиться к следующей диаграмме, чтобы представить эту зависимость графически:

Обратите внимание, что объем воды начинает увеличиваться при понижении температуры ниже 4 градусов Цельсия.

Теперь давайте поговорим о том, почему увеличивается объем воды или почему она расширяется, когда замерзает и достигает твердой формы.

Почему объем воды увеличивается, когда она замерзает?

Это явление связано с химическим составом воды. Видите ли, молекула воды состоит из двух атомов водорода и одного атома кислорода. Расположение этих атомов совершенно уникально, что придает воде некоторые особые свойства, такие как высокая теплоемкость воды, поверхностное натяжение, адгезия и когезия.

Является ли вода полярной или неполярной?

Химическая структура молекулы воды.

Такое расположение молекулы воды создает положительно заряженную сторону возле атомов водорода и отрицательно заряженную сторону возле атома кислорода.

Когда две молекулы воды сближаются, положительная сторона одной молекулы цепляется за отрицательную сторону другой молекулы. Когда это происходит в больших масштабах (т.е. с миллионами молекул воды), получается уникальная структура, которая объясняет некоторые химические свойства воды.

В жидком состоянии молекулы воды могут свободно перемещаться, образуя и разрывая водородные связи, что объясняет неправильную форму воды (или любой другой жидкости, если на то пошло). Некоторые молекулы воды часто «уложены» друг на друга, что объясняет более высокую плотность воды по сравнению со льдом.

Расположение молекул воды в жидком состоянии.

Однако по мере снижения температуры и охлаждения воды межмолекулярные силы увеличиваются, свобода движения молекул воды уменьшается, и они становятся все менее энергичными (с понижением температуры).

Когда вода достигает точки замерзания, движение ее молекул становится незначительным, и они приобретают более определенную форму, располагаясь в виде шестигранных решеток.

Ниже приведен упрощенный вариант расположения молекул воды в кристаллической форме во льду:

Расположение молекул воды в твердой форме.

Это кристаллическое расположение молекул воды менее плотное, поскольку оно не позволяет молекулам скапливаться (как это происходит в жидкой форме) из-за более сильных межмолекулярных сил.

Такое расстояние между молекулами и их фиксация в таком положении увеличивает объем воды, поэтому говорят, что вода расширяется при замерзании.

Почему лед плавает по воде

Вода расширяется, когда становится льдом, и, поскольку объем обратно пропорционален плотности вещества, лед менее плотен, чем вода. По этой причине лед, вещество, которое кажется более тяжелым, чем его жидкая форма, плавает на воде.

Если бы вода не расширялась при замерзании, лед был бы плотнее воды. Подумайте о влиянии на экосистему планеты! Лед на поверхности озер, морей и океанов утонет, и эти водоемы будут постепенно заполняться снизу вверх. С замерзшими озерами и океанами на Земле не было бы водной жизни.

Ещё несколько доводов в пользу того, почему водяное охлаждение не нужно вашему ПК

Привет, Хабр! Представляю вашему вниманию перевод статьи из журнала APC.

Перед тем как вы погрузитесь в изучение особенностей СВО, позвольте мне попытаться отговорить вас от этой затеи или, быть может, заставить ещё больше восхититься ею.

Давайте поговорим об одном диссиденте из мира пользовательских ПК. Да, речь пойдёт о водяном охлаждении. В частности, почему это не есть хорошо. На протяжении пяти лет мне довелось собрать около 60 персональных компьютеров. 12 из них имели различные СВО, не считая сборки AIO. Так что я имею достаточно полное представление об этом весьма специфичном хобби. И, увы, могу сказать о том, что водянка – это лажа. Далее я объясню подробно, почему.

01. Цена

Прежде всего, самое большое препятствие, с которым придётся столкнуться всем желающим приобрести СВО, – это её дороговизна. Проблема заключается в том, что, если вы страстно желаете приобрести водянку (потому что, признайтесь, она выглядит восхитительно, и для большинства из нас это основная причина, почему мы хотим купить её), вам придётся начать с разбора видеокарты, которая может стоить $1,400, и с крепления водоблока за $200.

02. Компоненты

Даже не знаю, с чего начать. Когда вы задумываетесь о крошечных дорогостоящих компонентах для системы водяного охлаждения, то рассуждаете примерно следующим образом: «Начну сборку с мягких трубок, ведь это проще всего», а потом думаете: «Вот докуплю ещё компрессионные фитинги, и всё будет готово». И хотя технически это возможно, сборка при помощи одних только мягких трубок и стандартных фитингов– не самый простой способ.

И что интересно: чем больше компонентов системы жидкостного охлаждения вы собираете, тем больше опыта приобретёте, и тем более вероятно, что будете склонны пополнять и использовать этот арсенал. И это в свою очередь повышает цену конечной сборки.

К примеру, сборка игрового монстра с разрешением 4K, которую мы делали в конце 2019 года, представляла собой набор из 70 частей 12 различных типов и 2 брендов на общую сумму около $1,000.

Это космическая цифра, но присовокупите к ней среднюю цену водоблока, далеко превосходящую отметку $200, стоимость радиаторов, колеблющуюся на уровне от $100 до $200, и не забудьте про помпу и резервуар, и цена в конечном итоге поднимется до $2,500.

03. Приобретение опыта

А потом вам нужно будет применить полученные знания на практике, под которой подразумеваются многочисленные пробы и ошибки, исследования и планирование. И этот процесс кажется бесконечным.

Вот вам основные рекомендации:

  • во-первых, убедитесь, что вода от резервуара поступает в помпу;
  • во-вторых, никогда не используйте трубки из разных металлов и, если позволяют денежные средства, купите трубки из меди;
  • в-третьих, всегда тестируйте работу компонентов перед тем, как приступить к сборке;
  • в-четвёртых, убедитесь, что подсоединили трубки к портам G1/4;
  • в-пятых, проверьте с особой тщательностью, что компрессионные фитинги плотно прилегают к трубки, а сами трубы размещены правильно. Никогда не забывайте про резиновое уплотнительное кольцо.

04. Сгибание трубок

После предварительных приготовлений вы приступите к сгибанию трубок, что само по себе является мистическим действом. Честно говоря, я всегда задаюсь вопросом, почему это срабатывает каждый раз, когда я делаю это.

Читайте также  Автозапуск двигателя своими руками

Когда речь идёт о сгибании, следует обращать внимание на материал: сделаны ли трубки и на основе ПЭТГ или простого акрилового волокна (трубки, сделанные из ПЭТГ, имеют более низкую точку перегиба, иные нагревательные характеристики, ударостойкие, но менее прозрачные). Затем вам нужно наметить место сгиба, угол, под которым вы хотите согнуть трубки, и приспособление для измерения углов.

Большинство, включая меня, сошлись на мнении, что оптимальный угол сгиба – 90°. Если он будет больше, то секция трубок будет выглядеть неаккуратно и вообще несравнимо с тем, как вы себе представляли это. Если только вы не профессионал в этом деле.

С другой стороны, если вы нацелились добавить больше углов, вам доступно множество инструментов для сгибания трубок. Но, я думаю, скорее всего это кончится тем, что вы будете сгибать трубки об углы стола или о какой-нибудь другой прямоугольный предмет.

И ещё: вы можете посмотреть тысячу видео и прочитать миллион туториалов по сгибанию труб, но лучший способ научиться этому – пытаться делать это самостоятельно.

05. Повышение производительности

Обидно признавать это, но, как показывает практика, заметного прироста производительности ждать не стоит.

Да, безусловно, компоненты будут нагреваться меньше, однако их замкнутость в пределах собственной архитектуры может привести к тому, что они могут сыграть в кремниевую лотерею. Если вы большой фанат оверклокинга, СВО определённо может быть вам полезной, однако её недостаточно, чтобы решить проблемы со стабильностью. В действительности можно ожидать увеличения производительности примерно на 10-15% по сравнению с системами воздушного охлаждения, и это ещё в лучшем случае.

Водянку выгодно будет приобретать владельцам процессоров с функцией авторазгона, таких как Ryzen, особенно с технологией Precision Boost Overdrive и GPU Boost для видеокарт.
Лучшее в технологии жидкостного охлаждения – это возможность уменьшить количество шума, издаваемого вашим компьютером. И это вполне достижимо. Соедините в единую петлю два больших 360 мм. радиатора, процессор и видеокарту, и вы сразу же заметите, что шума от вашего ПК стало гораздо меньше в сравнении с традиционным охлаждением через кулеры и тепловые трубки.

06. Обслуживание

Итак, вы собрали и запустили СВО, она круто выглядит, температура внутри корпуса ниже, а производительность компьютера немного выше. Теперь вам нужно научиться поддерживать её работоспособность. Это значит, что в первую неделю вы должны избавиться от оставшегося в системе воздуха. Для этого вы можете просто выждать какое-то время или же можете наклонять и вращать корпус так, чтобы переместить пузырьки воздуха в резервуар, а потом заполнить его под горлышко ещё большим количеством охлаждающей жидкости. Скорее всего, над последним вариантом вам придётся изрядно поломать голову. Как только справитесь с этим, поздравляем – ваша система работает так, как и было задумано.

Однако со временем без должного ухода охлаждающая жидкость может загрязнить водоблок, что может привести к снижению его производительности и уменьшению тепловой мощности в процессе эксплуатации. Это значит, что каждые 6-12 месяцев (в некоторых случаях больше, если у вас качественный хладагент), вам придётся осушать всю систему, разбирать её, промывать радиатор и водоблок, снова собирать и заполнять водой.

07. На самом деле

На самом деле вам придётся выложить кучу денег, чтобы соорудить всю конструкцию, и уйма времени на то, чтобы разобраться, как собрать её, и на то, чтобы распланировать покупку деталей, но в итоге окажется, что повышение производительности, за исключением снижения шума, ничтожно мало. Добавьте сюда беспокойство, которое возникает при разборке неоправданно дорогих компонентов (спасибо Nvidia), необходимых для создания системы и поддержания её работоспособности, и вы придёте к выводу, что для обычного пользователя нет никакого смысла делать это.

Но мне как человеку, собравшему 12 систем жидкостного охлаждения и всё ещё собирающему их, интересно узнавать что-то новое с каждой сборки. И потому я продолжу делать это до тех пор, пока не потеряю интерес к этому мазохистскому хобби. Зачем? Ну, помимо того, что мои нежные ушки миллениала желают, чтобы ПК издавал меньше шума, чем при взлёте самолёта с реактивным двигателем, подобная сборка выглядит чертовски круто. СВО удивительна, успешно собрать её – всё равно что достичь вершины горы. И, оглядываясь на многочисленные разочарования и огромные траты денег и времени, которые нужны для того, чтобы создать это чудо производительности с коротким жизненным циклом, в то время как число ядер и тактовая частота приобретают всё больший вес в нашей индустрии, приходишь к выводу о том, что в этом мазохистском хобби есть что-то определённо прекрасное.

Автотранспорт — правила, нормы, положения

Вода для системы охлаждения в качестве охлаждающей жидкости для двигателей внутреннего сгорания широко применяется наравне с низкозамерзающими смесями (антифризами).

При положительных температурах вода отвечает практически всем требованиям к охлаждающим жидкостям. Недостатками ее являются высокая температура замерзания (0°С), свойства образовывать накипь и вызывать коррозию металлов.
Пригодность воды для применения в качестве охлаждающей жидкости определяет значение ее жесткости, которая зависит от содержания в воде растворимых солей кальция и магния.
Жесткая вода содержит много растворимых солей, которые при ее нагревании до температуры выше 80°С выпадают в осадок, образуя накипь. Грунтовые воды (колодезная, родниковая, артезианская) являются жесткими, дают большое количество накипи и непригодны для заливки в систему охлаждения двигателей без предварительного умягчения.
Накипь обладает низкой теплопроводностью, ухудшает отвод тепла от стенок двигателя и нарушает его тепловой режим, вызывая перегрев.
В таблице 1 приведены значения перерасхода топлива и потери мощности двигателя в зависимости от толщины слоя накипи.
Таблица 1.

Толщина слоя накипи, мм Перерасход топлива, % Потеря мощности двигателя, %
1,0 3,5-4,0 4,5-5,0
2,0 4,0-7,0 5,0-10,0
3,0 7,00-10,0 10,0-15,0
4,0 10,0-14,0 15,0-25,0

Единица жесткости воды – миллиграмм – эквивалент на 1 литр воды (мг∙экв/л).
Один мг∙экв/л жесткости соответствует содержанию в 1 л воды 20,04 мг кальция или 12,16 мг магния.
Вода считается мягкой, если в ней содержится солей до 3,0 мг∙экв/л, средней жесткости – 3,0-6,0 мг∙экв/л и жесткой – более 6,0 мг∙экв/л.
Вода с жесткостью выше 3,0 мг∙экв/л подлежит обязательному умягчению.
Способы умягчения воды:
а) длительным кипячением (30-40 мин);
б) добавлением соды (6,0-7,0 г каустической, 10-20 г кальцинированной на 10 л воды);
в) обработкой тринатрийфосфатом (для осаждения 1 мг∙экв солей в 1 литре воды требуется 20 мг безводного тринатрийфосфата);
г) магнитной обработкой воды.
Перед заливкой в систему охлаждения умягченная вода должна быть профильтрована для удаления выпавших солей.
Антинакипины.
В случаях, когда затруднено применение умягченной воды, в систему охлаждения вводятся присадки, которые предотвращают отложение накипи и образуют защитные антикоррозийные пленки. Для этих целей широко используется хромник К2Cr2O7 (3-5 граммов на 1 литр воды) и гексаметафосфат натрия (5-6 граммов на 1 литр воды).
Удаление накипи.
а) содовым раствором: при использовании кальцинированной соды готовится раствор из расчета 100-150 г соды и 50 г керосина на 1 литр воды; при использовании каустической соды – 50-60 г каустика и 25 г керосина на 1 литр воды. Одним из этих растворов заполняется система охлаждения, двигатель работает 10-12 часов при нормальном тепловом режиме. Затем раствор сливается, а система охлаждения промывается холодной водой 2-3 раза.
б) 2% – раствором технической соляной кислоты (кроме двигателей с алюминиевыми деталями).
Раствор состоит из 53 мл соляной кислоты и 1 литра воды (кислота наливается в воду). При заполнении системы охлаждения этим раствором накипь растворяется с выделением углекислого газа. После окончания выделения газа раствор сливается, система промывается водой. После этого в систему на 1 час заливается 2%-ный раствор технической соды, состоящий из 20 г соды на 1 литр воды. Этим раствором нейтрализуются остатки кислоты. Затем раствор сливается и система промывается водой.
Природная мягкая вода.
К ней относятся дождевая и снеговая вода, в которых почти нет растворимых солей. Вода больших рек (Волга, Днепр, Обь и другие), озер из северного и Северно-Восточного районов страны также является мягкой и пригодной для использования в системе охлаждения. Воду из этих водоемов заливают в систему охлаждения только после фильтрации или отстаивания.

Читайте также  После выключения зажигания работает двигатель

Кулер или система жидкостного охлаждения — что лучше?

Одним из важных элементов в современных ПК является система охлаждения. Любому процессору, будь то бюджетный или топовый, требуется охлаждение для поддержания рабочей температуры на безопасном уровне. Обычно с процессором поставляется кулер, и его охлаждения бывает достаточно, чтобы выполнить нетребовательные задачи, но в мощных ПК используют куда более эффективные системы охлаждения.

Охлаждать центральный процессор можно разными способами, например, кулером или системой жидкостного охлаждения (СЖО), в том числе кастомной (собранной из отдельных компонентов СЖО). Кастомная Система жидкостного охлаждения лучше всего справится с самыми горячими процессорами и позволит добиться максимального результата, но правильно выбрать все необходимые компоненты, а затем их установить — задача не из простых. Конечная стоимость и вовсе может отпугнуть.

Возникает логичный вопрос, что выбрать. Для ответа на него ознакомимся с основными различиями между кулером и системой жидкостного охлаждения.

Принцип работы

Кулер состоит из двух основных компонентов: радиатор и вентилятор. В недорогих моделях радиатор изготавливают из алюминия, в дорогих — из меди. На поверхность процессора радиатор устанавливают при помощи пластины, фиксаторов или крепежных модулей. Радиатор увеличивает площадь теплового контакта процессора. Тепло рассеивается по множеству металлических ребер радиатора, которые охлаждаются с помощью вентилятора.

Система жидкостного охлаждения устроена сложнее. Ее основными компонентами являются: водоблок, радиатор, вентилятор, помпа и шланги, по которым движется хладагент. От центрального процессора тепло передается водоблоку. Хладагент передает его по шлангам на радиатор, который и рассеивает тепло. Вентиляторы охлаждают радиатор.

За движение жидкости отвечает помпа. В качестве хладагента зачастую выступает дистиллированная вода, которую смешивают с различными антикоррозийными добавками. Также производители предлагают готовые жидкости, которые остается только залить в систему.

Установка и профилактическое обслуживание

Кулер отличается простотой в обслуживании. Его легко установить, однако стоит учитывать тип разъема питания. Для поддержания работоспособности достаточно чистить кулер от пыли и смазывать. Можно с легкостью дополнить систему еще одним или несколькими вентиляторами.

Системы жидкостного охлаждения можно купить в комплекте, собранном производителем (AIO от английского «all in one» — «все включено») и сразу готовом к использованию, либо составить комплект самостоятельно. Серийные системы бывают обслуживаемыми и необслуживаемыми. Разница в них небольшая: в обслуживаемых можно долить жидкость или полностью заменить ее, а необслуживаемые лишены этой возможности.

Для установки СЖО потребуется дополнительное пространство внутри системного блока. Тем не менее, она охлаждает центральный процессор лучше, чем большинство воздушных кулеров. Система жидкостного охлаждения имеет более привлекательный внешний вид, особенно если дополнить ее прозрачными трубками и RGB-подсветкой.

В преимущества кастомной системы также можно записать бесшумную работу, красивый внешний вид и эффективное охлаждение. Вы можете собрать систему под свои нужды, а в дальнейшем проапгрейдить ее до нового уровня. Любые элементы системы можно заменить на более мощные, либо включить в СЖО дополнительные компоненты. Возможности таких систем ограничиваются исключительно кошельком владельца.

Но следует учесть, что кастомную систему сложно выбрать и установить. Перед покупкой придется тщательно изучить совместимость компонентов СЖО и компьютера, подобрать их в соответствии с тепловыделением процессора, не промахнуться с размерами, а также удостовериться в надежности каждого элемента. Конечный результат зависит от опыта и прямоты рук того, кто ее собирает.

Если вы готовы потратить несколько часов, а то и дней на подборку компонентов и сборку кастомной сжо, то рекомендуем ознакомиться со статьями о кастомном охлаждении компьютера и о том, как организовать кастомное СЖО на шлангах и трубках. Они помогут вам с выбором и установкой комплектующих.

Профилактическое обслуживание СЖО более трудоемко, чем обслуживание кулеров. Так, жидкость со временем теряет свои свойства, добавки оседают на трубках, что может привести к поломке системы. Трудности могут возникнуть с необслуживаемыми системами, где невозможна чистка или замена компонентов. В обслуживаемых и кастомных СЖО предусмотрена замена хладагента и комплектующих: время от времени придется полностью осушать систему, разбирать ее, промывать трубки и шланги, очищать радиатор и водоблок, а затем снова собирать, не забывая проверять систему на утечки.

Уровень шума

Работа вентиляторов достаточно шумная — уровень шума может превышать 45 дБ. Если пренебрегать профилактическим обслуживанием, кулер будет работать еще громче. Кроме того, из-за своих размеров кулер может мешать установке других компонентов или перекрыть доступ к ним внутри системного блока. При этом вентилятора меньшего размера, который будет работать тише, может оказаться недостаточно для эффективного охлаждения.

Системы жидкостного охлаждения выгодно отличаются от кулеров низким уровнем шума. У современных моделей он обычно не превышает 25 – 40 дБ. В СЖО при работе шумит помпа, однако шум все равно не такой громкий, как во время работы кулера. Уменьшить шум можно, если тщательно продумать компоновку системы на этапе сборки.

Недостатки

Главным недостатком систем жидкостного охлаждения является цена. СЖО стоят заметно выше, чем кулеры. Как и следовало ожидать, дороже всего обойдутся кастомные системы жидкостного охлаждения. Однако высокая стоимость оправдана возможностью тонкой настройки «под себя», особой эстетикой, особенно в кастомных сборках, а также более эффективным охлаждением. Цены на кулеры будут ниже, однако следует учитывать, что производительность кулеров соответствует их стоимости. Зато и установить их значительно проще.

Второй минус также относится к СЖО — это сложность обслуживания. Установка и техобслуживание таких систем требуют времени, опыта и прямых рук. Возможна утечка хладагента, которая повлечет выход из строя различных компонентов компьютера. Больше всего в этом случае рискуют системы кастомной сборки. Самые надежные — необслуживаемые системы. Утечки хладагента возможны даже в том случае, если вы выбираете очень надежную и дорогую модель СЖО от известной компании. Поэтому при установке и обслуживании систем жидкостного охлаждения необходимо тщательно проверять все узлы.

Читайте также  Газ вреден ли для двигателя

Основной недостаток кулера заключается в том, что его размеры прямо пропорциональны эффективности. Небольшой вентилятор не сможет качественно охладить процессор. А некоторые модели, помимо внушительных габаритов, имеют слишком большой вес, из-за чего материнская плата под ними может деформироваться.

Еще один недостаток кулера, о котором уже говорилось выше, — уровень шума, который со временем может усиливаться.

Эффективность

Будет ли водяное охлаждение эффективнее, чем воздушная система? В большинстве случаев — да. Конечно, можно найти кулеры, которые превосходят показатели недорогих систем жидкостного охлаждения. Но чаще всего жидкостное охлаждение будет более эффективным. В первую очередь это связано с тем, что вода имеет большую теплопроводность, чем воздух. Кроме того, в СЖО находится больший объем хладагента и он быстрее циркулирует по системе, а следовательно, лучше охлаждает центральный процессор.

Но нужна ли вам дополнительная охлаждающая способность СЖО? Для центрального процессора, который работает на заводских тактовых частотах и напряжении, хватит и воздушного охлаждения. Даже если вы планируете легкий разгон, воздушное охлаждение вполне может с ним справиться. В игровых компьютерах также можно ограничиться установкой кулера, поскольку процессор практически не задействуется и, соответственно, не перегревается. СЖО требуется для топовых версий процессора, либо когда процессор доведен до предела и работает в экстремальных условиях.

Система жидкостного охлаждения более эффективна, но преимущество кулеров в том, что они более надежны, просты в обслуживании и доступны: разница в стоимости СЖО и вентиляторов может составлять несколько тысяч рублей.

Вода или антифриз: какой теплоноситель лучше для автономной системы отопления?

Для стабильной работы автономной системы отопления качество теплоносителя имеет определяющее значение. Жалко дорогое оборудование, которое ломается из-за известковых отложений, некомфортно жить в доме с вечно непрогретыми радиаторами. Грамотно подобранный теплоноситель позволит избежать этих проблем; но, парадокс – иногда вода из-под крана справляется с доставкой тепла от котла к радиаторам лучше, чем дорогой антифриз. А иногда экономия на антифризе оборачивается лопнувшими трубами. Что выбрать и когда, разбираемся в девяти карточках.

1 . Какие теплоносители используют в системах отопления частного дома?

Самый распространенный теплоноситель – это дистиллированная, подготовленная или обычная вода теплоемкостью 4,18 Дж/Кг. ¾ домовладельцев используют в системах отопления обычную воду. Главный недостаток воды, как теплоносителя – она расширяется при замерзании, разрывая радиаторы, трубы и теплообменники котлов. Во избежание этого в систему отопления заливают не воду, а один из видов антифризов. Если дом зимой постоянно отапливается, вода вполне справится с задачей теплоносителя – доставлять тепло из котла к радиаторам.

2 . Какими качествами должна обладать вода, рекомендованная к использованию в автономных системах отопления?

Вода должна соответствовать следующим требованиям: содержать растворенного кислорода не более 0,05 мг/куб.м; уровень кислотности должен быть в диапазоне 8-9,5, показатель жесткости рекомендован 7-9 мг экв/л, концентрация железа не более 0,5-1 мг/л.
Самый важный здесь показатель жесткости: если он превышен, это приведет к известковым отложениям в элементах СО. Можно использовать специальные умягчители воды для системы отопления. Также воду кипятят, это тоже работает на умягчение и снижение концентрации солей до безопасных величин, и перегоняют через реагентные, ионообменные или электромагнитные фильтры-смягчители. Часто в воду добавляют кальцированную соду или ортофосфат натрия или заливают в систему отопления дистиллированную воду.

3 . А готовят ли в реальности домовладельцы воду к заливке в систему отопления?

Многие владельцы вообще никак не готовят воду, берут просто водопроводную – обычно этого достаточно для использования в закрытых системах отопления частного коттеджа.
Doobik, модератор FORUMHOUSE: «Практически на всех настенных котлах, а именно они особенно чувствительны к качеству воды, штатно стоят подпиточные и заливочные краны, которые позволяют пополнять систему отопления из водопровода. Если бы это мешало жизни котла, то этих кранов не существовало бы, а в инструкции был бы рассказ, как и чем заливать. Но, разумеется, можно заполнять систему и росой с орхидей».

4 . Какие антифризы в системе отопления частного дома используют чаще всего?

Самая распространенная основа для теплоносителей – этиленгликоль и пропиленгликоль, в которые добавляют стабилизирующие присадки, позволяющие теплоносителям выдерживать до 10 отопительных сезонов. Присадки могут защищать от грибков, плесени, водорослей, от образования пены и очагов коррозии, они позволяют антифризам работать при температуре выше +100 градусов. Антифриз с органическими присадками, не содержащими амины, нитриты и буру, предпочтительнее для СО частного дома.

5 . Для каких систем отопления антифризы не подходят?

Многие специалисты рекомендуют не использовать антифризы в системах отопления со стальными радиаторами и другими элементами. Сталь не совместима с активными компонентами антифризов. Также антифризы не используют в системах отопления открытого типа, контурах с естественной циркуляцией. Недопустимы при использовании антифриза и уплотнители из пакли с масляной краской.

6 . Зависит ли выбор антифриза от особенностей системы автономного отопления?

Да. Этиленгликоль не рекомендуют использовать в открытых системах отопления и двухконтурных котлах, которые работают и на отопление дома, и на подогрев водопроводной воды – он не является экологически безопасным и применяется только в СО с одноконтурным котлом. Зато этиленгликоль не такой вязкий, как пропиленгликоль, быстрее циркулирует по системе, быстрее разносит тепло, у него высокая теплоемкость и он хорошо работает в небольших радиаторах. И он дешевле, чем пропиленгликоль.

Пропиленгликоль не токсичен, безопасен даже для людей с аллергиями – если в результате протечки он выльется на пол, ничего страшного не произойдет. Поэтому его применяют в двухконтурных котлах. Вязкость пропиленгликоля здесь даже скорее преимущество, потому что благодаря ей теплоноситель убирает отложения с элементов системы отопления.

7 . Что такое температура начала кристаллизации теплоносителя?

Это температура, при которой в теплоносителе образуются первые кристаллики льда. Ее указывают на упаковке, и если там значится -30, это значит, что именно до такой температуры антифриз будет справляться с заявленными производителем задачами. Для регионов с морозными зимами рекомендуют антифризы на -65 градусов, для юга и регионов с мягким климатом -20- -30; для северо-запада — -30.

8 . По каким еще критериям надо выбирать теплоноситель?

У теплоносителя должна быть максимально высокая теплоемкость, чтобы эффективно собирать и быстро переносить по дому тепловую энергию (по этому показателю незамерзайки уступают воде примерно на 15%); у него должен быть широкий диапазон от замерзания до закипания; в нем не должны содержаться соли, которые будут откладываться в теплообменнике или трубах; он должен быть безопасным.

9 . Нужны ли для системы отопления, в которой используют антифризы, более мощные циркуляционные насосы, чем для СО, в которой используют воду, и можно ли использовать в ней открытый расширительный бачок?

Да. Все антифризы обладают гораздо большей вязкостью, чем вода, поэтому, чтобы обеспечить их движение по контуру, нужны более мощные насосы. Также при использовании антифризов в системе отопления лучше предусмотреть мембранный бак большего объема, потому что температурное расширение антифриза выше, чем у воды. Открытый расширительный бачок в СО с антифризом применять нельзя, потому что незамерзайки быстро испаряются.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button