Двигатель

Бензиновый двигатель внутреннего сгорания

Бензиновый двигатель внутреннего сгорания

Бензиновый двигатель внутреннего сгорания

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Содержание

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Бензиновый двигатель внутреннего сгорания

Бензиновые двигатели — класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя ножной педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Содержание

История [ править | править код ]

Первый практический бензиновый двигатель был построен в 1876 году в Германии Николаусом Отто, хотя ранее были попытки Этьена Ленуара, Зигфрида Маркуса, Юлиуса Хока и Джорджа Брайтона.

Классификация бензиновых двигателей [ править | править код ]

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия— двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим воздухом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..
Читайте также  Промывка системы охлаждения двигателя сывороткой

Рабочий цикл бензинового двигателя [ править | править код ]

Рабочий цикл четырёхтактного двигателя [ править | править код ]

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. Поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя [ править | править код ]

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей [ править | править код ]

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей [ править | править код ]

  • Отсутствие громоздких систем смазки и газораспределения.
  • Бо́льшая мощность в пересчёте на единицу рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Меньший вес.

Карбюраторные и инжекторные двигатели [ править | править код ]

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Бензиновый двигатель — достоинства и недостатки

Статья об основных плюсах и минусах бензинового мотора. Конструктивные особенности и эксплуатация. В конце статьи — интересное видео о том, как выбрать бензиновый двигатель. Статья об основных плюсах и минусах бензинового мотора. Конструктивные особенности и эксплуатация. В конце статьи — интересное видео о том, как выбрать бензиновый двигатель.

Бензиновый двигатель — достоинства и недостатки

Подавляющее большинство современных автомобилей оснащается бензиновыми моторами, ввиду чего особую актуальность приобретает знание всех его преимуществ и слабых мест. Это позволит скорректировать режим его эксплуатации, а также вовремя проводить регламентные работы, что, в конечном счёте, положительно скажется на длительности исправной работы двигателя.

Конструктивные особенности и их влияние на основные показатели бензинового мотора

Автолюбители предпочитают бензиновый двигатель в силу его низкой стоимости, относительной простоты конструкции, а также меньшей массы. Эти факторы обусловлены, прежде всего, конструктивными особенностями такого агрегата.

Принцип работы бензинового мотора базируется на воспламенении заранее подготовленной топливо-воздушной смеси с помощью искры, вырабатываемой свечами зажигания. В этом случае степень сжатия, возникающая в камере сгорания, относительно невелика и составляет от 8 до 12 единиц. Именно это и позволяет сделать бензиновый двигатель ощутимо легче своего дизельного собрата, в котором повышенные нагрузки обусловливают необходимость применения деталей с большим запасом прочности.

В качестве ещё одного механизма снижения общей массы мотора широко применяется отказ от стальных гильз в цилиндрах в пользу специального металлокерамического износостойкого слоя. К огромному сожалению автовладельцев, многие из двигателей, построенных по этой технологии, не подлежат капитальному ремонту, необходимость которого может возникнуть не только в связи с длительной эксплуатацией, но и из-за использования некачественного топлива.

Современные тенденции автомобилестроения предусматривают активное внедрение турбонаддува и на бензиновых моторах, что позволяет ещё больше расширить их рабочий диапазон, а также поднять тягу на малых оборотах. Негативной стороной такого решения является существенное удорожания агрегата в целом, а также необходимость в более дорогом и частом техническом обслуживании.

Что касается удельной эффективности, которая у бензиновых моторов на достаточно высоком уровне, то постоянные работы, направленные на её рост, в некоторой степени негативно сказались на долговечности и ремонтопригодности агрегата в целом. Речь, прежде всего, ведётся об уменьшении массы поршневой группы для снижения внутренних потерь.

Это достаточно эффективная мера для повышения удельной мощности и улучшения экономичности, но её обратной стороной являются повышенный расход масла и необходимость использования дорогостоящих сплавов, которые могли бы обеспечить должную степень износостойкости для малых площадей контакта.

Следующим направлением работы над современными бензиновыми двигателями является оптимизация камеры сгорания и повышение степени сжатия. Эти меры привели к тому, что моторы стали крайне чувствительны к качеству применяемого моторного топлива, а малейшая неисправность в газораспределительном механизме неизбежно приводит к капитальному ремонту если не всего мотора целиком, то его головки блока цилиндров. Такая ситуация стала широко распространённой ещё и в связи с отказом от использования металлических цепей в пользу ремней в приводе газораспределительного механизма.

Бытует мнение, что бензиновый мотор способен преобразовать не более 20-30% высвобождающейся от сжигания топлива энергии, в то время как для дизеля этот показатель составляет 30-40%, а с применением турбонаддува и интеркулера – до 50%. Отчасти это верно, но с учётом тенденции, направленной на повышение степени сжатия бензинового двигателя и снижения аналогичного показателя для дизельного, а также повсеместного использования наддува, разница в эффективности существенно сокращается.

Лучшие по сравнению с бензиновым тяговые характеристики дизельного двигателя обусловлены его конструктивными особенностями, в частности тем, что он не имеет дроссельной заслонки и регулирование мощности производится ограничением подачи соляра. Это имеет как плюсы так и минусы. С одной стороны – давление в цилиндрах остаётся неизменным,вне зависимости от режима езды, что обеспечивает высокие тяговые характеристики в области низких оборотов, а с другой – это предполагает интенсивные нагрузки на детали двигателя.

Читайте также  Нужна ли защита картера двигателя

Конструктивные особенности бензинового мотора открывают достаточно широкие возможности для его модификации. В частности, его гораздо проще перевести на альтернативное топливо, такое как пропан-бутан или метан. Самое важное при таких переделках заключается в том, что двигатель не теряет возможности работы на бензине, что делает его битопливным. Что же касается дизеля, то подобная переделка чревата полным переходом на газ, поскольку меняется принцип действия системы зажигания.

Эксплуатационные показатели

Бензиновый двигатель — достоинства и недостатки

Отличительной чертой бензиновых моторов по сравнению с дизельными является выход на максимальную мощность при высоких оборотах, что позволяет без труда поддерживать интенсивный разгон в очень широком диапазоне тахометра, даже без использования турбонаддува. Такой характер работы очень хорошо подходит для небольших автомобилей, которые эксплуатируются с малыми нагрузками преимущественно на загородных трассах.

Это вынуждает автомобилиста стартовать на повышенных оборотах, что негативно сказывается на ресурсе механизма сцепления.

Если принимать во внимание расход топлива, то в оптимальном режиме работы он будет весьма мал. К большому сожалению, специфика современного движения делает экономичную езду редким исключением. Так, бензиновый двигатель очень чувствителен к нагрузкам, и если салон автомобиля полон или есть весомый груз в багажнике, то расход топлива резко возрастает.

Это же относится и к городскому режиму езды, который способен увеличить этот показатель в 1,5 раза по отношению к базовой величине. Фактически, такой характер работы делает бензиновый двигатель мало приспособленным для установки его на внедорожники и коммерческий транспорт.

Если рассматривать этот аспект в разрезе зимней эксплуатации, то бензиновый мотор не только легче запускается, но и требует гораздо меньше времени на прогрев, что обеспечивает возможность отапливать салон спустя всего несколько минут после запуска. Для дизельного мотора при достаточно большом салоне автомобиля может потребоваться установка автономного отопителя.

Не менее важным эксплуатационным показателем современного мотора является уровень его шума и вибраций. По этому показателю бензиновый двигатель однозначно выигрывает у дизеля, в котором воспламенение смеси происходит под огромным давлением, высвобождая большое количество энергии, что приводит к сильным вибрациям и возникновению характерного рокота, который практически невозможно заглушить ни эффективной шумоизоляцией, ни использованием дорогостоящих демпферов.

Также для автомобилей с механической коробкой передач при их оснащении дизельным мотором частота переключений существенно возрастает, что в городских условиях может снизить привлекательность и удобство такого транспорта.

Что касается безопасности, то бензин гораздо более пожаро- и взрывоопасен, поэтому при эксплуатации такого автомобиля повышенное внимание должно уделяться герметичности топливной системы, исправности электрооборудования.

Необходимо также принимать во внимание тот факт, что даже пары бензина легко воспламеняются (именно поэтому и запрещено хранить это топливо в плохо проветриваемых помещениях).

Если говорить о требовательности к качеству топлива, то здесь безоговорочно предпочтительны бензиновые моторы, поскольку несмотря на усложнение их узлов и систем управления многие из них по-прежнему практически без потерь могут переваривать бензин с более низким октановым числом.

Что же касается легендарной неприхотливости дизелей, то она канула в лету вместе с их атмосферными модификациями. Современные топливные насосы высокого давления и форсунки попросту приходят в негодность при попытке залить некачественное топливо, содержащее присадки.

Качество отечественного соляра таково, что многие автопроизводители специально вносят в автомобили ряд конструктивных изменений, позволяющих им работать на менее качественном топливе, либо вообще отказываются от поставок в нашу страну дизельных моторов.

Этот факт следует принимать во внимание при покупке машины, которая в Россию официально никогда не поставлялась, либо же при приобретении подержанного автомобиля из США, Европы или Японии. Большинство современных моделей дизелей весьма требовательно к применяемым расходным материалам, в особенности к фильтрам тонкой очистки топлива, что обусловливает необходимость их частой замены. Более того, стабильность его работы гораздо больше зависит от степени их засоренности, чем у бензинового аналога.

Стоимость технического обслуживания бензиновых моторов также существенно ниже их дизельных собратьев, в результате чего многие полагают, что покупка такого автомобиля впоследствии позволит существенно сэкономить. Кроме того, межсервисный интервал дизеля практически вдвое короче, что предопределяет частые визиты на сервис.

Что касается самого обслуживания, то легковые дизели в нашей стране серийно практически не выпускались, автомобилисты познакомились с ними только благодаря импорту. Это же в полной мере относится и к сервисным центрам, в которых не всегда можно встретить квалифицированного мастера, специализирующегося на ремонте дизельных агрегатов.

Что касается традиционного мнения о том, что дизельные двигатели существенно экономичней, то с учётом практически равной стоимости высокооктанового бензина и качественного соляра этот факт, особенно для легкового автомобиля, вызывает сомнение.

Кроме того, высокая изначальная цена и дороговизна обслуживания ещё больше сокращают разницу в эксплуатационных расходах. Таким образом, дизель целесообразно использовать в коммерческом транспорте, а также в автомобилях с большим ежегодным пробегом.

Заключение

Всё вышесказанное позволяет сформулировать основные преимущества бензинового двигателя:

    относительная конструктивная простота;

Основные недостатки такого мотора:

    высокая пожаро- и взрывоопасность, обусловленная спецификой топлива;

Таким образом, принимая во внимание вышеперечисленные факторы, следует сделать объективный вывод о том, что и бензиновый и дизельный двигатели имеют как преимущества, так и недостатки, которые разграничивают целесообразные сферы их применения.

Видео о том, как выбрать бензиновый двигатель:

Двигатель внутреннего сгорания: будущее есть

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще «топчется» вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.


В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

[15:25:50] Хафиятуллин Ринат:

Также мотор оснащен управляемым электроникой турбокомпрессором, который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций. При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров — 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3-4 л на 100 км.

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3-4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе – исключительно простая конструкция и низкая себестоимость. Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Двигатель Achates Power имеет предельно простую конструкцию

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие «традиционные» дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания. В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость – это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками. Так, при потреблении 3-4 литров на «сотню», двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.

Читайте также  Краска для двигателя автомобиля


Секрет выдающихся характеристик кроется в схеме работы Grail Engine

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса. В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками. Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

В каких двигателях применяются автомобильные бензины?

В каких двигателях применяются автомобильные бензины?

Говоря о том, в каких двигателях применяются автомобильные бензины, можно выделить два варианта ответа: узкий и широкий. В узком понимании автомобильные бензины используются для двигателей внутреннего сгорания автомобилей и прочего транспорта. В широком же смысле автомобильный бензин – это достаточно чистый и универсальный источник энергии, который могут использовать различные силовые установки, о которых мы поговорим в этой статье.

Основное применение: автомобильные двигатели

Конечно же, начать стоит с прямого применения данного вида топлива – в двигателях внутреннего сгорания. Бензиновые моторы подразделяются по следующим критериям:

  • Тип подачи топлива: с помощью инжектора или карбюратора. Первый тип – более современный, предполагает принудительный впрыск топлива (инжекцию) при помощи форсунок. Этот метод автомобильная отрасль унаследовала от авиационной, так как именно инжекторы позволили в 30-х годах добиться от ДВС нужной для авиации мощности. Второй тип – устаревший, предполагает подачу готовой смеси из топлива и воздуха в цилиндр для воспламенения.
  • Объем двигателя. Чем выше объем – тем выше выходная мощность силового агрегата. Для современных легковых автомобилей типичный объем составляет до 1500 куб. см, в то время как внедорожники и спортивные автомобили могут иметь двигатели до 3000 кубов и более.
  • Количество цилиндров. Так как преобразование энергии углеводородов в механическую работу происходит в цилиндрах, где воспламеняется бензин, увеличение количества цилиндров позволяет прикладывать большее совокупное усилие. В современных агрегатах многопоршневого принципа действия встречаются конфигурации от 4 до 6 цилиндров.
  • Расположение цилиндров. От того, как располагаются цилиндры, зависит метод передачи механической энергии от воспламенения в каждом из цилиндров и итоговая эффективность (КПД). Наиболее распространенными являются рядные и V-образные конфигурации, однако за долгую историю разработки ДВС инженеры предложили множество других вариантов, располагая цилиндры в форме букв U, Н, W, X, а также в форме звезды.

Во всех двигателях применяется схожий принцип воспламенения: топливо смешивается с воздухом, сжимается, после чего воспламеняется при помощи искры, расширяется и приводит в движение поршень.

Прочие виды двигателей, работающие на автомобильном бензине

Ключевое свойство автобензина – его универсальность. Это источник энергии, который может приводить в движение аппараты различного типа и назначения. Чаще всего он применяется в таких агрегатах:

  • Малогабаритные транспортные средства: моторные лодки, катера. В то время, как для крупных судов более уместно дизельное топливо.
  • Колесные транспортные средства, отличные от автомобилей. В состав этой группы входят снегоходы, вездеходы, квадроциклы, мотоциклы и прочие виды техники, работающей на базе двигателя внутреннего сгорания.
  • Строительная и сельхоз техника. Моторы на автомобильном бензине применяются во многих устройствах: вибраторах для асфальта, бензопилах, мотокосах и т.п.
  • Генерирующие установки. Несмотря на то, что в большинстве случаев требования по экономичности электрогенераторов лучше удовлетворяет дизельное топливо, бензиновые агрегаты также достаточно популярны, особенно если речь о установках резервного питания.

Сфера применения автомобильных бензинов напрямую зависит от марки продукта, качества, а также прочих технических характеристик. К примеру, в холодное время года возможно применять только топливо с особыми присадками, обеспечивающими стабильное воспламенение при низких температурах.

Производители двигателей указывают, какой тип топлива должным образом подходит для двигателя. При эксплуатации силовых агрегатов эти рекомендации важно строго соблюдать.

Volkswagen отказался от разработки бензиновых и дизельных двигателей. Что дальше?

Недавно корпорация Audi официально подтвердила, что больше не будет заниматься разработкой двигателей внутреннего сгорания. Это не значит, что производитель решил завязать с выпуском новых машин: ещё какое-то время Audi будет выпускать автомобили с бензиновыми и дизельными силовыми агрегатами, однако прекращает исследования в области разработки новых двигателей с выбросом CO2. Никаких вам двухлитровых турбированных TFSI и прочего. Не трудно догадаться, что Audi хочет использовать взамен — электромоторы. Вскоре после этого генеральный директор Volkswagen Ральф Брандштеттер заявил, что новых двигателей внутреннего сгорания, бензиновых или дизельных, в линейке производителя не будет. Кажется, мы приближаемся к электромобилям гораздо быстрее, чем предполагаюсь ранее.

В ближайшие 10 лет линейка новых авто Volkswagen будет выглядеть как-то так

На данный момент у нас нет планов по разработке и запуску совершенно нового семейства двигателей, — заявил глава Volkswagen.

Volkswagen прекратит выпуск машин с ДВС

Как и Audi, VW будет продолжать улучшать свою текущую линейку двигателей внутреннего сгорания, потому что, по словам представителей бренда, они все еще нужны нам в течение определенного времени и должны быть как можно более эффективными. Но что подразумевается под «определённым временем»? Два года, три года или, может, 5 лет?

Автомобили с двигателем внутреннего сгорания по-прежнему жизненно важны для Volkswagen, потому что они прибыльны. Но эти деньги будут использованы, чтобы помочь превратить VW в компанию, специализирующуюся только на электромобилях. Несмотря на то, что электромобиль Volkswagen ID.4 получает много внимания по мере того, как он поступает в дилерские центры по всему миру, всё еще есть очень большая вероятность, что Golf следующего поколения (в том числе GTI) будет оснащён двигателем внутреннего сгорания, а не станет полностью электрическим. Подключаемая гибридная система в паре с двигателем с турбонаддувом весьма вероятна. Но только электромотор и аккумуляторные батареи — вряд ли.

Volkswagen ID.4

Volkswagen ID.4 может стать первым серийным электромобилем бренда

Поэтапный отказ от двигателей внутреннего сгорания VW не произойдет в одночасье, и его материнская компания, Volkswagen Group, официально не взяла на себя обязательства полностью перейти на электромобили, как это недавно сделала GM. Но Audi и Volkswagen явно очень хотят как можно быстрее расширить парк электромобилей своего бренда.

Какие автопроизводители переходят на электромобили

Помимо Volkswagen ID.4 и ID.3 линейка электромобилей немецкого бренда будет продолжать расширяться за счет кроссовера-купе ID.5 и трехрядного кроссовера ID.6, хотя они будут продаваться не во всех странах. Серийная версия минивэна ID.Buzz появится в 2023 модельном году, а концепта ID.Vizzion — не раньше 2024 года.

Volkswagen ID.Buzz

Volkswagen ID.Buzz так и манит взять доску отправиться на пляж (если зарядки хватит)

Линейка электромобилей Audi пока представлена только несколькими моделями серии e-tron.

Считалось, что полный переход на электромобили займёт 10, 15 или даже 20 лет, однако мы видим, что производители сами делают всё для того, чтобы отказаться от двигателей внутреннего сгорания. Корпорация General Motors уже взяла на себя обязательство к 2035 году производить только электромобили. Отказаться от бензина и другого ископаемого топлива также хотят компании Ford и Volvo. Подход Volvo, кстати, наиболее радикальный, она уже перестала разрабатывать новые машины с ДВС. Последний представленный ею автомобиль, Volvo C40, полностью электрический, и компания больше не будет производить другие машины. Шведы разработали свой электромобиль совместно с Google, запас его хода составляет 420 километров, а до 100 км/ч Volvo C40 разгоняется за 4,9 секунды.

Volvo C40

Volvo C40 поставляется с сервисами Google

По мнению аналитиков Morgan Stanley, в 2021 году продажи электрических автомобилей по всему миру могут возрасти на 50%.

Очевидно, что если автопроизводитель не поддержит новую тенденцию, он через какое-то время останется на обочине. Даже Ford и Hummer уже выпускают электромобили (электрический «Мустанг», как вам такое?), хотя было время, когда они ставили наиболее прожорливые 3-литровые, 5-литровые движки и даже более мощные. Свою роль в этом переходе сыграла Tesla — Илон Маск показал, что на электромобилях можно зарабатывать, что они экономичные и комфортные. Значит ли это, что скоро обычных автомобилей с ДВС не останется? Возможно, но явно не к 2030 году. К тому же есть направления, где без бензиновых агрегатов пока никуда — например, автогонки. Но я не исключаю, что в будущем в той же F1 уже не будет рёва моторов на старте, а только звук покрышек.

Неужели электромобили такие экологичные?

Это правильный вопрос, ведь отказ от бензиновых и дизельных двигателей должен быть чем-то обоснован. Электромобили получают энергию с АЭС, ГЭС и ТЭС (тепловых электростанций). К основным проблемам тепловых электростанций относят: оседание почвы, сжигание топлива, сжигание кислорода, выбросы в атмосферу и тепловое загрязнение водоёмов. То есть электростанция сжигает уголь, чтобы потом какой-нибудь владелец нового электрического Volkswagen зарядил свой автомобиль на парковке торгового центра.

Кроме того, линии электропередач дают 70% КПД против 98% нефтепровода. Первые имеют очень большую протяжённость, и часть энергии просто не доходит до пункта назначения. Кроме того, существует износ ЛЭП из-за долгого использования, и появляются узкие места с низкой пропускной способностью, что тоже влияет на потери.

В то же время есть такая вещь, как КПД получения кинетической энергии мотора. По факту при сравнении КПД электродвигателя в два раза выше КПД двигателя внутреннего сгорания. Но как мы видим, ни экологичности, ни большей эффективности в электромобилях не было и нет. Более подробно об этом можно почитать в этой статье.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Что лучше — электромобиль или бензиновый авто?

Tesla Model S

Что бы ни говорили, но переход на электромобили во многом начался с Tesla

Как вы могли заметить, с точки зрения экологии «электричка» и авто с ДВС не сильно отличаются, так как электричество тоже берётся далеко не из воздуха. Но если говорить о преимуществах для потребителя, электромобили вне конкуренции. Они почти не ломаются, им не надо делать ТО, менять масло в двигателе и так далее. Не говоря о том, что заправка электричеством гораздо дешевле, чем бензином или дизелем.

Вам может быть интересно: Сколько придется потратить владельцу Tesla за первые 160 000 километров пробега

Конечно, всегда найдутся люди, которым обязательно нужно ощущать 12 цилиндров под капотом, но их становится всё меньше. Производители уже даже начали делать искусственный звук выхлопа для некоторых электромобилей — для этого используются специальные динамики, чтобы владельцу было легче привыкнуть после машины с ДВС. Такая штука, например, реализована в электрических Jaguar.

Лично я ничего не имею против перехода на электромобили и, возможно, сам бы с радостью пересел на Tesla или другой электрокар, если бы для них была необходимая инфраструктура. По этому параметру Россия, к сожалению, пока отстаёт, тогда как в Европе без проблем можно путешествовать на электромобиле с запасом хода 400-500 километров. А у новой Tesla Model S запас хода вообще увеличен до 800 километров. Не все бензиновые машины столько проедут на одном баке.

Хотя как давний поклонник Volkswagen, я буду скучать по TSI-моторам, коробкам DSG и прочим «ништякам» автомобилей с ДВС. Несмотря на все их «болячки», есть в них свой шарм.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button