Температура в камере сгорания дизельного двигателя

Что происходит в камере сгорания дизельного двигателя?

Сам процесс горения происходит при наличии нескольких компонентов – материала горения, кислорода в нужном объеме и источника воспламенения. Помимо пламени или искры источником воспламенения может стать нагрев. Как известно, дизельное топливо самовоспламеняется именно от нагрева. Воспламенение происходит в результате сжатия воздуха в цилиндре до нужной температуры. При этом температура воспламенения растет по мере роста давления, а температура самовоспламенения топлива уменьшается с ростом давления. Таким образом, топливовоздушная смесь в дизельном двигателе легко воспламеняется при высоком давлении, и это происходит тем лучше, чем больше разница этих температур.

Стоит сразу оговориться, что дизельный двигатель работает с хорошей отдачей только тогда, когда в нем хорошо сгорает топливо. При этом высокое давление в цилиндре и правильный впрыск топлива являются ключевыми факторами для горения дизтоплива.

Что происходит в камере сгорания дизельного двигателя?

Этот процесс можно описать так. Топливо из форсунки впрыскивается в цилиндр дизельного двигателя, распыляется и самовоспламеняется, и пламя распространяется по всему цилиндру. В этот момент впрыск прекращается, а несгоревшее топливо продолжает догорать. Таким образом, весь процесс горения, которое продолжается совсем короткое время, можно разбить на несколько отдельных этапов.

Этап от впрыска топлива до начала его горения – период задержки воспламенения. В этой фазе форсунки впрыскивают горючее, оно распространяется в виде тумана в воздухе, нагретом высоким давлением. Этот туман состоит из микроскопических капель топлива, но мгновенно оно не воспламеняется, так как прежде ему нужно испариться под воздействием горячего воздуха. Топливо перемешивается с воздухом и нагревается до температуры самовоспламенения. Очень важно, чтобы период задержки воспламенения был максимально коротким, так как именно от эффективности этого этапа зависят последующие этапы горения.

С начала воспламенения и до момента, когда пламя распространилось по всему цилиндру, – это второй этап, называемый периодом распространения пламени. В этот момент смесь воздуха с топливом, образовавшаяся в предыдущий период, начинает возгорать. Она воспламеняется именно в тех местах, где топливо хорошо перемешалось с воздухом. Горение воздушно-топливной смеси повышает температуру внутри цилиндра, а это увеличивает давление в камере сгорания. Из-за этого ускоряются испарение топлива и его перемешивание с воздухом. В это время пламя быстро распространяется по всей топливной смеси, образовавшейся в период задержки воспламенения. В момент начала горения топлива давление в камере сгорания резко увеличивается. Однако, если период задержки воспламенения длится слишком долго, это приводит к неправильной работе всего мотора.

Решения для ремонта

Одна из ключевых особенностей современной системы впрыска дизельных двигателей Common Rail – высокое давление в топливной рампе, достигающее 2500 и более бар. Для его поддержания во многих современных автомобилях (как легковых, так и легких коммерческих) используется топливный насос высокого давления Bosch CP4. Помимо высокой эффективности он обладает еще целым рядом преимуществ по сравнению с моделями предыдущего поколения, включая небольшие габариты и вес. Bosch предлагает эффективные комплексные решения в области обслуживания систем Common Rail в целом, позволяя дизельным мастерским выполнять весь спектр услуг – от первичной диагностики систем впрыска до ремонта инжекторов и ТНВД. Задачу первичной диагностики успешно выполняют системные сканеры Bosch KTS, позволяющие определить неисправность в системе Common Rail благодаря высокоэффективному программному обеспечению Bosch ESI[tronic] 2.0. Дальнейшая локализация проблемы в системе проводится при помощи комплекта Bosch Diesel Set 3.1, который содержит все необходимое для оценки работоспособности ТНВД и клапана регулировки давления. После выявления неисправных узлов и демонтажа инжекторов или топливного насоса высокого давления проводится их проверка на стенде Bosch EPS 708 или 815. Благодаря выпуску специальных наборов дооснащения диагностические стенды Bosch позволяют проводить испытания насосов любых поколений. Новый комплект оборудования Bosch для ремонта ТНВД CP4 позволяет производить проверку, полную разборку и ремонт насоса в точном соответствии с утвержденной технологией ремонта. В состав комплекта входят специализированные инструменты и инструкции для выполнения требуемых процедур.

Третий этап – до момента окончания впрыска – период прямого горения. Форсунка продолжает впрыскивать топливо, которое сгорает немедленно, контактируя с открытым пламенем в камере сгорания. К этому этапу пламя распространяется уже по всей камере, а давление достигает максимального показателя.

Четвертый этап – до окончания горения – называется догорание. На этом этапе несгоревшее топливо должно полностью сгореть. Поршень движется вниз, в результате давление и температура падают. Однако для полного сгорания топлива нужно высокое давление в камере сгорания, которое обеспечивает самовоспламенение топлива, а также правильный впрыск топлива, произошедший в нужный момент и в требуемом объеме. В противном случае распространение пламени существенно повышает температуру в камере сгорания, и топливо загорается немедленно. А когда впрыск заканчивается, оставшееся топливо продолжает гореть.

В случае, когда давление в цилиндре меняется, водитель может услышать длительный стук или металлический звук. Такое возникает в условиях, когда давление в цилиндре понижается и смеси требуется больше времени, чтобы достичь температуры воспламенения. Из-за низкой компрессии удлиняется период самовоспламенения. И когда смесь все же возгорится, количество топлива в камере будет больше, чем то, что необходимо для нормального режима работы. Одномоментно воспламенится большое количество топлива, что приведет к резкому увеличению давления и росту температуры в камере. По этой причине возникает ударная волна, которая действует на днище поршня и стенки цилиндра и производит металлический стук.

По причине низкой компрессии может возникать и белый дым. Это происходит тогда, когда давление падает и топливо не самовоспламеняется при достижении поршня самой высокой мертвой точки. Когда поршень идет вниз, температура падает, и пламя не успевает распространиться. Дизтопливо продолжает испаряться в периоды прямого горения и догорания. Несгоревшее горючее выбрасывается из цилиндра в конце периода дожига, и именно поэтому возникает белый дым. Он может также появиться при позднем впрыске топлива. Компрессия и температура в камере сгорания достигают необходимого уровня, однако из-за слишком позднего впрыска у топлива не остается достаточно времени для того, чтобы испариться. И тогда воспламенение дизтоплива происходит, когда поршень начинает движение вниз. В этот момент давление и температура начинают падать, и пламя не успевает распространиться по всей камере сгорания, а потому и горение быстро прекращается. При этом испарение топлива продолжается, и его несгоревший остаток выбрасывается из цилиндра.

По причине большого объема впрыскиваемого топлива возникает черный дым. Если в камеру сгорания впрыскивается нормальный объем топлива, капли перемешиваются с воздухом, и топливо эффективно сгорает. Но при большом количестве топлива в условиях ограниченного объема кислород в камере полностью выгорает в период горения, а у оставшегося топлива просто не остается достаточно воздуха для перемешивания. А несгоревшее топливо преобразуется в углерод, который и вызывает черный дым.

Повысить КПД

Современные конструкторы ищут способы, чтобы увеличить КПД дизельного двигателя и понизить при этом токсичность отработавших газов в течение всего срока службы автомобиля. Одним из способов повысить КПД двигателя и снизить уровень вредных выбросов является более точное управление системой впрыска топлива. Дизельные форсунки могут распылять топливо до 10 раз в каждом рабочем цикле двигателя, поэтому прецизионное управление каждым отдельным моментом впрыска позволяет еще больше повысить топливную экономичность, снизить уровень вредных выбросов и уменьшить уровень шума в течение всего срока службы двигателя.

Инженеры Delphi разработали технологию управления насос-форсункой с обратной связью, реализуемую посредством аппаратного и программного обеспечения. С ее помощью поддерживается максимальная эффективность впрыска в течение продолжительного времени. Это достигается за счет использования дополнительного электрического провода внутри корпуса насос-форсунки, игла которой действует в качестве «электрического выключателя». Данный процесс обеспечивает передачу сигнала управления в реальном времени, что является более точным и более экономически выгодным решением, чем те, что реализованы в аналогичных системах.

Посылая электрический ток по игле распылителя, Delphi распознает моменты контакта иглы с седлом, ограничителем подъема или нахождения между этими двумя положениями. Этот процесс позволяет системе непрерывно перекалибровывать все моменты подачи топлива на протяжении всего срока службы автомобиля. Сочетание электрического выключателя и нового алгоритма управления создает уникальное решение, которое обеспечивает высокую точность многофазного впрыска. Такая конструкция работает независимо от настроек параметров впрыска и сгорания топлива, а также сложности конструкции двигателя или силовой установки.

Использование в конструкции форсунки «выключателя» и нового алгоритма работы электронного блока управления позволило инженерам добиться снижения уровня вредных выбросов и предложить эффективное решение для сложных технических задач.

Правильная рабочая температура двигателя

Стабильность работы любого автомобиля зависит от условий эксплуатации и технических характеристик двигателя внутреннего сгорания. Такой показатель, как рабочая температура двигателя, зависит не только от условий окружающей среды, но и от многих эксплуатационных факторов. Если данный параметр соответствует расчетной величине, т. е. находится в допустимом диапазоне, силовой агрегат обеспечивает максимальную отдачу энергии в течение длительного времени. При оптимальных режимах двигателя внутреннего сгорания создаются лучшие условия для функционирования всех систем автомобиля.

Какая должна быть рабочая температура двигателя

При сгорании топливных смесей в цилиндрах мотора выделяется огромное количество тепла. В камерах сгорания температура достигает более 2000°С. В конструкцию силовых агрегатов включена система охлаждения, элементы которой отводят тепло от рабочих узлов. Благодаря эффективной работе элементов охлаждающей системы ДВС, тепловой режим поддерживается в оптимальных границах от +80 до 90°С. Существуют отдельные типы моторов, для которых нормы расширены до 110°С, чаще всего это механизмы с воздушным охлаждением.

При работе двигателя в оптимальном температурном режиме создаются наилучшие условия для:

  1. Полноценного наполнения цилиндров топливовоздушными смесями.
  2. Стабильности работы силового агрегата во время движения.
  3. Надежной работы механизмов и систем транспортного средства.

Отклонения от нормы температурных режимов силовых агрегатов

Показания температуры внутри двигателя можно увидеть на приборе, расположенном в салоне любого современного автомобиля.

датчик температуры двигателя

К чему приводит превышение нормы рабочей температуры в двигателе? При сверхвысоких температурах технологические тепловые зазоры металлических элементов нарушаются. Это вызывает следующие негативные изменения в работе силового агрегата:

  • ускоренный износ рабочих узлов и деталей;
  • деформации и поломки механизмов;
  • уменьшение мощности двигателя;
  • возникновение детонации;
  • несанкционированное воспламенение горючего.

Что означает понятие – низкая температура двигателя? Если в процессе движения автомобиля стрелка прибора находится ниже рекомендуемого уровня температурного режима, имеются веские основания для тревоги. Непрогретая топливовоздушная смесь конденсируется и оседает на стенках цилиндров. При попадании конденсата в масляный поддон происходит разжижение моторного масла. Технических свойства и характеристики смазочного материала резко ухудшаются. При длительной работе в низком тепловом режиме узлы и детали силового агрегата быстро изнашиваются и приходят в негодность.

Читайте также  Альтернативные двигатели для автомобилей

Если температура двигателя не поднимается до рабочей, во избежание преждевременного выхода из строя компонентов мотора, водителю необходимо отправить автомобиль на диагностику в ближайший сервисный центр.

Рабочая температура бензинового двигателя

Работа каждого двигателя внутреннего сгорания сопровождается выделением тепла. Рабочие элементы мотора функционируют в условиях высоких температурных режимов.

При опускании поршня в самую нижнюю точку затрачивается большое количество энергии, одновременно с этим выделяется тепло. Элементы силовых агрегатов изготовлены из металла. Как известно, при нагревании данный материал расширяется. При изготовлении узлов и деталей двигателей предусмотрены специальные тепловые зазоры, рассчитанные на нагрев изделий до оптимальных значений. Для предотвращения заклиниваний в конструкцию мотора включена система охлаждения двигателя.

конструкция двигателя

Какая рабочая температура бензинового двигателя является оптимальной? Рабочая температура бензиновых силовых агрегатов как карбюраторного, так и инжекторного, не должна превышать +90°С. Задача охлаждающей жидкости – сохранять постоянную температуру двигателя на должном уровне.

Интересно: Существует понятие «опасная температура двигателя». Для ДВС бензинового типа она составляет 130°С. После достижения предельных значений может произойти заклинивание элементов силового агрегата.

Важно: После включения мотора при дальнейшем движении транспортного средства оператор, постоянно держит под контролем значения рабочей температуры ДВС. Отклонения свидетельствуют о проблемах, появившихся в охлаждающей системе:

  1. Повышение температуры в бензиновом двигателе приводит к закипанию и быстрому испарению ОЖ.
  2. При уменьшении ее количества температура мотора стремительно возрастет.
  3. Под воздействием высоких температур металл начнет деформироваться и расширяться в объеме.
  4. Размеры деталей будут сильно изменены.
  5. В результате, произойдет заклинивание мотора.

Чтобы восстановить работоспособность такого двигателя потребуется дорогостоящий капитальный ремонт автомобиля.

К чему приводит переохлаждение мотора

Такое явление, как переохлаждение также негативно сказывается на качестве работы силового агрегата. Чаще всего это случается зимой или при эксплуатации транспортного средства в сложных климатических условиях крайнего севера.

Рабочая температура двигателя зимой может быть резко снижена в процессе движения авто. При этом потоки охлажденного воздуха обдувают радиатор и весь силовой агрегат. В результате, охлаждающая жидкость резко понижает температуру мотора, даже, если он работает на полных нагрузках.

Понижение рабочей температуры мотора опасно по следующим причинам:

  1. При переохлаждении системы питания в карбюраторе обмерзает отверстие жиклера, через которое поступает воздух, в результате свечи зажигания заливаются бензином. Чтобы продолжить движение, водителю придется ждать высыхания свечей.
  2. При минусовых температурах окружающей среды в автомобилях, работающих на воде, охлаждающая жидкость (ОЖ) замерзает в трубках радиатора. Прекращение циркуляции ОЖ приводит к перегреву мотора. Опытные автовладельцы устанавливают специальные тканевые перегородки или защитные жалюзи на решетку радиатора.
  3. Ухудшение качества или отсутствие отопления салона автомобиля в зимний период может привести к нарушениям управления транспортным средством.

Рабочая температура дизельного двигателя

Поддержание рабочей температуры дизеля является необходимым условием для оптимального функционирования механизмов и систем транспортного средства. Принцип действия дизельного мотора принципиально отличается от бензинового. Здесь топливная смесь не готовится заранее. Первым в камеру попадает воздух. При сильном сжатии воздушная масса разогревается до +700°С. В момент топливного впрыска происходит взрыв с последующим равномерным сгоранием образовавшейся смеси. В результате чего, поршень перемещается в нижнюю мертвую точку.

температура дизельного двигателя

Температура дизеля зависит от следующих факторов:

  • тип мотора;
  • период задержки воспламенения топливовоздушной смеси;
  • качество, равномерность сгорания топлива.

Считается, что оптимальная рабочая температура двигателя должна находиться в пределах 70 – 90°С. Допустимый максимум для дизельных силовых агрегатов, работающих под усиленными нагрузками, равен +97°С, не более.

Совет: Если дизельный двигатель исправен, перед началом движения рекомендуется прогреть охлаждающую жидкость до температуры не менее +40°С. При сильных морозах за бортом автомобиля мотор может начинать прогреваться только при движении. На первых порах рекомендуется включить пониженную передачу. В дальнейшем, нагрузка на движок должна повышаться постепенно, только после поднятия температуры хотя бы до 80°С.

Краткое описание принципа действия системы охлаждения

В данную систему входят следующие рабочие элементы:

  1. Расширительная емкость.
  2. Радиатор охлаждения.
  3. Патрубки верхний и нижний.
  4. Рубашки охлаждения блока цилиндров.
  5. Соединительные шланги.
  6. Насос ОЖ.
  7. Термостат.
  8. Радиатор отопителя салона.
  9. Охлаждающая жидкость.

Схема работы системы охлаждения силового агрегата:

схема охлаждения двигателя

Как видно из схемы, в охлаждающей системе происходят следующие процессы:

  • Охлаждающая жидкость под воздействием насоса в принудительном порядке проходит по шлангам, трубкам и прочим магистралям.
  • Она эффективно омывает каждый цилиндр ДВС.
  • Цилиндры, в частности камеры сгорания, являются источниками основного тепла, выделяемого силовым агрегатом.
  • Вокруг каждого цилиндра расположены специальные технологические полости под названием «рубашки охлаждения».
  • Рубашки охлаждения сообщаются между собой посредством подготовленных каналов. Через данные полости охлаждающая жидкость циркулирует в постоянном режиме.
  • Благодаря движению ОЖ, тепловая энергия отводится от двигателя внутреннего сгорания в радиатор через верхний патрубок.
  • Проходя сквозь лабиринты тонких трубок радиатора, жидкость охлаждается при помощи естественного обдува или воздушных потоков, создаваемых вентилятором.
  • Далее ОЖ продолжает круговое движение через нижний патрубок охлаждающего радиатора.

Методы восстановления нормальной температуры ДВС

При обнаружении завышения данного параметра, прежде всего, нужно остановить автомобиль, заглушить мотор и начать обследование:

  1. Убедиться в достаточном объеме антифриза в системе охлаждения.
  2. При необходимости восполнить необходимое количество.
  3. Жидкость заливается непосредственно в радиатор охлаждения (при этом необходимо соблюдать осторожность, чтобы не обжечься горячим составом).
  4. Осмотреть систему, чтобы исключить возможные протечки.
  5. Продиагностировать радиатор на предмет герметичности.

Если восполнение объема антифриза не дало ожидаемого результата, температура двигателя продолжает подниматься, это означает, что мотор нуждается в компьютерной диагностике в условиях специализированного сервисного центра.

Среди наиболее частых отказов в системе охлаждения ДВС можно выделить следующие пункты:

  • сбои в работе клапана термостата;
  • поломки электрического вентилятора;
  • чрезмерное засорение трубок радиатора;
  • поломка клапана крышки расширительного бачка;
  • протечки в корпусе насоса;
  • нарушение герметичности системы.

вентиляторы охлаждения

Тепловой режим двигателя считается оптимальным при его значениях, находящихся в пределах от +80 до +90 °С. При таких условиях мотор работает стабильно. При этом обеспечена существенная экономия горючего материала, детали и узлы силового агрегата получают минимальный износ, независимо от нагрузок на двигатель и особенностей работы транспортного средства.

Важно: Чтобы рабочая температура ДВС находилась в заданных пределах, необходимо проводить регулярную диагностику системы охлаждения силового агрегата.

Оптимальный режим и температура дизельного двигателя

В последнее время можно заметить бурное развитие сферы автомобилестроения. Отдельное внимание уделяется развитию дизельных технологий. Немалая часть современных машин оснащается дизельными моторами. При этом производители не стоят на месте и постоянно модернизируют движки, наделяя их большей мощностью.

Основной принцип функционирования дизельного движка не изменяется уже много лет. При этом каждый последующий выпущенный движок становится всё более экологичным, производительным и тихим.

Шумные автомобили, с густым и тёмным дымом из выхлопной трубы и соответствующим звуковым сопровождением остались в далёком прошлом. Современные дизельные движки характеризуются высокой экономичностью, большой мощностью, отличной динамикой разгона и удобством эксплуатации. Дизельный мотор продолжает отвечать постоянно возрастающим потребностям современного общества. Рассмотрим, как производителям удается повышать технические характеристики движка, при этом отвечая требованиям экологичности.

Принципы функционирования дизельного мотора, положительные и отрицательные черты.

Дизельный мотор в большей степени отличается от аналога, работающего на бензине методом создания топливной смеси, а также способом её воспламенения. Как правило, во всех моторах с карбюратором и инжектором, функционирующих на бензине, рабочий состав производится в тракте впуска. Но на сегодня существуют также движки, с функцией приготовления рабочего состава в цилиндре – что во многом напоминает работу дизеля. Существует ещё одно характерное отличие дизеля от аналога на бензине. В бензиновом движке поджиг рабочей смеси производится от искрообразования, в дизеле же поджиг состава производится благодаря высокой температуре воздуха в цилиндре.

Принципы функционирования движка таковы. Во время хода поршня вниз осуществляется допускание потока воздуха в цилиндр. Запущенный в цилиндр воздушный поток, повышает свою температуру во время обратного хода. В таком случае, температура работы мотора может находиться в приделе от семисот до девятисот градусов по Цельсию. Такая высокая температура, объясняется показателями сжатия. Во время нахождения поршня в верхнем положении, происходит впрыск смеси сопровождающийся определенным давлением, и температура увеличивается. Контактируя с горячим потоком, топливо воспламеняется. При воспламенении, дизельное топливо расширяется и ведёт к нагнетанию давления в рабочем цилиндре. В связи с этим также увеличивается температура. Данный процесс объясняет звуковое сопровождение работы дизельного мотора.

Все это помогает мотору использовать обедненный состав при небольшой цене топлива, что объясняет экономичность и практичность движка. В сравнении с бензиновым двигателем, дизель отличается высокой производительностью.

Несмотря на ряд достойных преимуществ, данный тип двигательной системы имеет свои характерные недостатки. К отрицательным сторонам можно отнести высокую шумность в процессе эксплуатации и постоянно возникающие вибрации. При этом, запустить холодный дизельный двигатель достаточно проблематично. Конечно, современные производители сводят отрицательные стороны дизельного двигателя к минимуму.

Рассмотрим характерные особенности некоторых составляющих двигательной системы, функционирующей на дизельном топливе.

Конечно, учитывая характерные особенности дизельного мотора, производителя усиливают определённые его детали. Это объясняется тем, что изменяется рабочая температура движка и увеличиваются показатели сжатия. В отличие от бензинового аналога, дизельный движок имеет более высокие показатели сжатия, в связи с чем некоторые детали в значительной мере отличаются от привычных элементов бензинового мотора.

Одной из важнейших деталей дизельного мотора является поршень. В зависимости от параметров камеры сгорания смеси и её типа, форма поршня может различаться. В некоторых системах камера сгорания установлена в дно самого поршня. Существует также характерное отличие дизельного движка в моменте движение поршня. При нахождении в максимально верхней точки, поршень может выходить за поверхность блока цилиндров.

Учитывая основную особенность воспламенения топливной смеси, дизельный двигатель не оснащается привычной совокупностью зажигания. Несмотря на это, элементы системы зажигания все же применяются на дизельном движке. Свечи, применяемые на дизелях несколько отличаются. Свеча для дизеля, имеет встроенную спираль, отвечающую за термические показатели воздушного потока. Данный элемент незаменим при запуске непрогретого мотора. Во многом технические характеристики и уровень экологичности мотора определяется системой впуска смеси и габаритами камеры сгорания.

Поговорим о принципе функционирования камер сгорания топливной смеси.

В частности от характеристик двигательной системы, на дизеле применяется камеры двух видов: разделённые и целостные. Раньше, в автомобилестроении применялись чаще раздельные отсеки. В таком случае состав подается не в пространство на поверхности подвижного поршня, а в камеру сгорания, которая располагается в ГБЦ. Конструкция раздельных устройств может различаться в частности от принципа создания смеси. Существует несколько способов создания топливной смеси в дизельном движке: перед камерная и вихревого – камерная.

Читайте также  Какой дизельный двигатель можно поставить на ниву

В первом случае, подача состава происходит в специальный отсек, который взаимодействуют с каналами цилиндров через небольшие отверстия. Топливная смесь при взаимодействии со стенками каналов, смешивается с воздушным потоком. После воспламенения, состав стремительно движется в камеру сгорания, где происходит финальная стадия сгорания. Промежутки в каналах определяются с учетом того, чтобы во время создания состава оставалась разница давлений в камере и цилиндре. В ином случае, формирование смеси аналогично происходит в первичной камере, которая имеет вид сферы. Далее, состав подается в отсек через специальный проводник. Во время движения, состав контактирует со стенами камеры и смешивается с воздухом.

Характерное отличие конструкции мотора с раздельным отсеком сгорания в том, что процесс формирования рабочего состава проходит в несколько этапов. Такое построение процесса, в некоторой степени снижает давление на рабочий поршень, в связи с чем происходит более равномерная работа мотора.

Несмотря на это, устройство раздельной камеры имеет несколько значимых недостатков. Дело в том, что при данной конструкции двигателя увеличивается расход топливной смеси. Это объясняется некоторым количеством потерь смеси во время взаимодействия с отсеком. Также, определенная часть состава теряется при переходе воздуха из рабочего цилиндра в отсек, после чего смесь поступает обратно.Помимо потери экономичности, такие этапы частично влияют на характеристики запуска движка и изменяется рабочая температура мотора.

Строение дизелей с целостной камерой сгорания также называют движками прямого впрыска. Отсек сгорания в таком случае представляет собой специальное пространство, встроенное в дно подвижного элемента. В данном случае смесь переходит прямо в цилиндр. Некоторое время назад, такая конструкция камеры сгорания чаще использовалась для двигателей с низкими оборотами, имеющими немалый объем, которые часто устанавливались на крупногабаритные авто. Такая система, обуславливает хорошую экономичность, но во время эксплуатации все же возникают некоторые трудности. Дело в том, что при такой организации камеры сгорания усложняется процесс воспламенения топливной смеси. В связи с этим набор скорости сопровождается характерным звуковым сопровождением, а также нестабильна рабочая температура двигателя.

В последнее время в автомобилестроении нередко применяются специальные электронные системы, которые регулируют подачу топливной смеси на двигателях с прямым впуском. Большая часть современных дизельных моторов, оснащается системой электронного контроля. Такая функция приводит к снижению шумовых характеристик мотора и прибавляет двигателю экономичности, в то время как рабочая температура поддерживается в допустимом пределе.

Система подачи топливной смеси.

Данная совокупность является одной из ключевых элементов дизельного мотора. Система подачи состава обеспечивает передачу необходимой части топлива с определённым давлением.

Важнейшим компонентом ДВС является насос. Данное устройство осуществляет подачу нужного количества смеси из бака прямо в магистраль определенного цилиндра. При увеличении давления клапан форсунки открывается для допуска смеси. В случае если давление падает, форсунка закрывается. В современном автомобилестроение применяются насосы для топлива нескольких видов: рядные и распределительная. Первый вид насосов имеет несколько отдельных отсеков, которые определяются по наличию цилиндров в системе. Как становится ясно из названия, все элементы располагаются в одном ряду. Несмотря на технические характеристики современных движков, данный вид насосов сегодня используется крайне редко. Дело в том что при такой конструкции насоса, рабочее давление изменяется исходя от движения коленвала. Поэтому, такая конструкция не экологичная.

В отличие от первого вида насосов, распределительные создают большее давление при подаче смеси, что обеспечивает соответствие нормам токсичности выхлопных газов. Данный вид насосов регулирует давление исходя от основных параметров мотора, что является весьма удобным при эксплуатации. Также характерным отличаем данного вида насосов является компактность. Распределительный насос характеризуется хорошей равномерностью впрыска топлива в цилиндре. Также одним из преимуществ данного вида насосов является равномерная работа при высоких оборотах мотора. Конечно, как и любое другое устройство распределительный насос имеет свои слабые стороны. Дело в том что данный вид компрессора весьма привередлив к качеству используемой смеси. Это объясняется тем что каждая составляющая устройства в ходе работы смазывается используемой смесью.

Для подачи топлива, также используется форсунка, которая вмонтирована в ГБЦ. Количество форсунок в данном случае полностью повторяет число цилиндров. При этом, каждый процесс работы мотора происходит поочерёдно. Магистрали форсунки также находится в голове блока и имеют вид каналов. Возможность работать поочерёдно, позволяет производить первичный пуск топлива – небольшого количества. Благодаря данной возможности, работа двигателя становится более мягкой и равномерный, что хорошо сказывается на экологичности отработанных газов. Основным недостатком данных устройств является относительно высокая цена которая объясняется сложной конструкцией.

Турбонаддув.

Турбодизель, одна из наиболее мощных разновидностей моторов. Благодаря турбонаддуву, цилиндры мотора наполняются необходимым количеством смеси, что позволяет во многом повысить продуктивность движка.

Такое строение двигателя позволяет увеличить давление отработанных газов, в связи с чем практически полностью исключается возможность провала которые так характерны для движков на бензине. Это связано с тем, что компрессор обеспечивает наддув с самого начала функционирования мотора. Как известно, одним из отличий дизеля является отсутствие заслонки дросселя. В связи с этим, для осуществления контроля за работой двигателя не требуются дополнительные системы управления. Данное устройство двигателя, позволяет обеспечить равномерность мощности несмотря на объем мотора. Таким образом, турбонаддув позволяет уменьшить массу мотора.

Турбонаддув особенно актуален при эксплуатации автомобиля в высокогорных условиях, где приходиться компенсировать нехватку воздуха для того чтобы удерживать мощность. Одним из характерных недостатков данной конструкции двигателя, является привередливый в эксплуатации компрессор. В связи с тем, что компрессор весьма чувствителен к качеству моторного масла, срок его эксплуатации несколько ниже ресурса мотора.

Рабочая температура данного вида моторов отличается от стандартного двигателя работающего на ДТ. Данная конструкция характеризуется повышенной температурой в отсеке сгорания. Температура поддерживается маслом, которое попадает на поршни через определенный распылитель.

Рабочая температура двигателя

Рабочая температура двигателя

Когда двигатель работает в заданном температурном диапазоне, все процессы протекают без каких-либо отклонений, мотору ничего не угрожает, помимо естественного износа.

Показания температуры внутри силового агрегата можно увидеть на приборе, расположенном в салоне любого современного автомобиля. Рассмотрим, какие цифры считаются оптимальными, а какие указывают на возможные проблемы с охлаждением двигателя.

Оптимальная температура прогретого двигателя

При сгорании топливных смесей в цилиндрах выделяется огромное количество тепла. В камерах сгорания температура достигает +2000 °С и более. Именно поэтому в конструкцию силовых агрегатов обязательно включена система охлаждения, элементы которой отводят тепло от рабочих узлов.

Охлаждающая система позволяет поддерживать оптимальную рабочую температуру двигателя – +80-90°С. В отдельных типах силовых агрегатов эти нормы расширены до +110°С (чаще всего это механизмы с воздушным охлаждением).

При работе двигателя в указанном выше тепловом диапазоне создаются наилучшие условия для полноценного наполнения цилиндров топливовоздушной смесь и стабильной работы мотора.

Специалисты допускают, что движение можно начинать уже при температуре около +50 °С. При этом до выхода на рабочий режим не стоит слишком нагружать двигатель.

Движение можно начинать при температуре двигателя около +50 градусов

Силовые агрегаты современных автомобилей доходят до этого значения за 3-5 минут. Однако целиком ориентироваться на время не стоит. Очень важно опираться и на собственные ощущения. Например, обратите внимание на печку: если вы чувствуете, что идущий из нее поток воздуха уже холодный, но в салоне стало значительно теплее, значит, двигатель достиг рабочей температуры. Исключение составляют машины с электрическим нагревателем. Его работа никак не зависит от температуры мотора.

Рабочая температура бензинового двигателя

Рабочая температура бензиновых силовых агрегатов – как карбюраторных, так и инжекторных – не должна превышать +90 °С. Нагрев свыше +130°С опасен для таких двигателей – существует риск заклинивания некоторых элементов.

Слишком высокие рабочие температуры свидетельствуют о проблемах, появившихся в системе охлаждения – скорее всего, уровень антифриза слишком низок (такое происходит в результате его закипания, испарения, утечек). Если вовремя не решить этот вопрос, под воздействием высоких температур детали начнут деформироваться, расширяться в объеме, двигатель может выйти из строя и потребовать дорогостоящего капитального ремонта.

Рабочая температура дизельного двигателя

Оптимальная рабочая температура дизеля – +70… +90 °С. Допустимый максимум для силовых агрегатов, работающих под усиленными нагрузками, составляет +97 °С.

Поддержание этого теплового режима – необходимое условие для оптимального функционирования механизмов и систем транспортного средства. Принцип действия дизельного двигателя иной, чем у бензинового. Топливная смесь не готовится заранее. Первым в камеру попадает воздух. При сильном сжатии он разогревается до +700 °С. В момент топливного впрыска происходит «взрыв» с последующим равномерным сгоранием образовавшейся смеси. В результате этого поршень перемещается в нижнюю «мертвую» точку.

Температура в дизеле зависит от типа двигателя, периода задержки воспламенения топливовоздушной смеси, качество и равномерность сгорания топлива.

Причины повышения температуры

Конструктивно в двигателе предусмотрены тепловые зазоры, так как при нагреве детали подвержены расширению. Если температура силового агрегата поднимается сверх допустимых значений, зазоры нарушаются, что вызывает интенсивный износ, задиры и различного рода поломки. Помимо этого, наблюдается снижение мощности двигателя из-за ухудшения наполнения цилиндров, а также появление детонации и самовоспламенение топлива.

Перегрев и задымление двигателя

Перегрев может происходить из-за:

  • Заклинивания клапана термостата в закрытом положении
  • Неисправности электровентилятора охлаждения радиатора (поломки электромоторчика, перегорания предохранител, отказа датчика температуры или гидромуфты)
  • Загрязнения радиатора охлаждения
  • Неисправности клапана в крышке расширительного бачка
  • Пробоя прокладки блока цилиндров
  • Течи помпы
  • Ослабления натяжения или обрыва ремня привода дополнительных механизмов
  • Разгерметизации системы охлаждения

Причины того, что двигатель не прогревается до рабочей температуры

Неполный прогрев двигателя так же нежелателен, как и его перегрев. Если топливо соприкасается с холодными стенками цилиндров, оно конденсируется и попадает в картер, разжижая находящееся там масло. Это ведет к интенсивному износу как ЦПГ, так и других пар трения: шейки коленчатого вала, вкладышей, постели распредвала, промежуточного и балансирного валов и пр.

Кроме того, при непрогретом силовом агрегате (особенно зимой) во время поездок на короткие расстояния масляные присадки практически не вступают в работу и не выполняют свои функции.

При слишком низкой температуре двигателя масло более густое и хуже проникает к деталям, вызывая их износ, повышенный расход топлива, падение мощности силовой установки.

Возможными причинами слишком низкой рабочей температуры двигателя могут стать:

  • Зависание клапана термостата в отрытом положении
  • Частые поездки на короткие расстояния
  • Более «холодные», чем предписаны производителем, термостат или датчик температуры
Читайте также  На ходу глохнет двигатель

Последствия превышения рабочей температуры двигателя

Прежде всего, повышение температуры в двигателе ведет к интенсивному кипению и испарению охлаждающей жидкости. Как только охлаждение прекращается, температура силового агрегата начинает расти еще быстрее.

Кипение охлаждающей жидкости

Перегрев двигателя приводит к изменению свойств металла и его расширению. Детали начинают деформироваться и менять свои нормальные размеры, что приводит к их заклиниванию.

При сверхвысоких температурах тепловые зазоры между металлическими элементами силового агрегата нарушаются, что вызывает следующие негативные последствия:

  • Ускоренный износ рабочих узлов
  • Деформации и поломки механизмов
  • Уменьшение мощности двигателя
  • Возникновение детонации
  • Несанкционированное воспламенение горючего

Методы восстановления нормальной температуры

При обнаружении завышенной температуры двигателя необходимо заглушить его и, для начала, убедиться в достаточном объеме антифриза. При необходимости следует долить охлаждающую жидкость в радиатор.

Далее нужно осмотреть систему, чтобы исключить возможные протечки, обследовать радиатор на предмет герметичности.

Если после доливки антифриза температура двигателя продолжает расти, лучше обратиться в специализированный сервисный центр, где проведут компьютерную диагностику силового агрегата.

Наиболее частыми причинами перегрева двигателя являются неисправности системы охлаждения:

  • Сбои в работе клапана термостата
  • Поломка электрического вентилятора
  • Засорение трубок радиатора
  • Поломка клапана крышки расширительного бачка
  • Протечки в корпусе насоса
  • Нарушение герметичности системы

Своевременной обнаружение и устранение этих неисправностей – залог стабильной и долговременной работы двигателя.

Тонкости горения

Сам процесс горения происходит при наличии нескольких компонентов – материала горения, кислорода в нужном объеме и источника воспламенения. Помимо пламени или искры источником воспламенения может стать нагрев. Как известно, дизельное топливо самовоспламеняется именно от нагрева. Воспламенение происходит в результате сжатия воздуха в цилиндре до нужной температуры. При этом температура воспламенения растет по мере роста давления, а температура самовоспламенения топлива уменьшается с ростом давления. Таким образом, топливовоздушная смесь в дизельном двигателе легко воспламеняется при высоком давлении, и это происходит тем лучше, чем больше разница этих температур.

Стоит сразу оговориться, что дизельный двигатель работает с хорошей отдачей только тогда, когда в нем хорошо сгорает топливо. При этом высокое давление в цилиндре и правильный впрыск топлива являются ключевыми факторами для горения дизтоплива.

Что происходит в камере сгорания дизельного двигателя?

Этот процесс можно описать так. Топливо из форсунки впрыскивается в цилиндр дизельного двигателя, распыляется и самовоспламеняется, и пламя распространяется по всему цилиндру. В этот момент впрыск прекращается, а несгоревшее топливо продолжает догорать. Таким образом, весь процесс горения, которое продолжается совсем короткое время, можно разбить на несколько отдельных этапов.

Этап от впрыска топлива до начала его горения – период задержки воспламенения. В этой фазе форсунки впрыскивают горючее, оно распространяется в виде тумана в воздухе, нагретом высоким давлением. Этот туман состоит из микроскопических капель топлива, но мгновенно оно не воспламеняется, так как прежде ему нужно испариться под воздействием горячего воздуха. Топливо перемешивается с воздухом и нагревается до температуры самовоспламенения. Очень важно, чтобы период задержки воспламенения был максимально коротким, так как именно от эффективности этого этапа зависят последующие этапы горения.

С начала воспламенения и до момента, когда пламя распространилось по всему цилиндру, – это второй этап, называемый периодом распространения пламени. В этот момент смесь воздуха с топливом, образовавшаяся в предыдущий период, начинает возгорать. Она воспламеняется именно в тех местах, где топливо хорошо перемешалось с воздухом. Горение воздушно-топливной смеси повышает температуру внутри цилиндра, а это увеличивает давление в камере сгорания. Из-за этого ускоряются испарение топлива и его перемешивание с воздухом. В это время пламя быстро распространяется по всей топливной смеси, образовавшейся в период задержки воспламенения. В момент начала горения топлива давление в камере сгорания резко увеличивается. Однако, если период задержки воспламенения длится слишком долго, это приводит к неправильной работе всего мотора.

Решения для ремонта

Одна из ключевых особенностей современной системы впрыска дизельных двигателей Common Rail – высокое давление в топливной рампе, достигающее 2500 и более бар. Для его поддержания во многих современных автомобилях (как легковых, так и легких коммерческих) используется топливный насос высокого давления Bosch CP4. Помимо высокой эффективности он обладает еще целым рядом преимуществ по сравнению с моделями предыдущего поколения, включая небольшие габариты и вес. Bosch предлагает эффективные комплексные решения в области обслуживания систем Common Rail в целом, позволяя дизельным мастерским выполнять весь спектр услуг – от первичной диагностики систем впрыска до ремонта инжекторов и ТНВД. Задачу первичной диагностики успешно выполняют системные сканеры Bosch KTS, позволяющие определить неисправность в системе Common Rail благодаря высокоэффективному программному обеспечению Bosch ESI[tronic] 2.0. Дальнейшая локализация проблемы в системе проводится при помощи комплекта Bosch Diesel Set 3.1, который содержит все необходимое для оценки работоспособности ТНВД и клапана регулировки давления. После выявления неисправных узлов и демонтажа инжекторов или топливного насоса высокого давления проводится их проверка на стенде Bosch EPS 708 или 815. Благодаря выпуску специальных наборов дооснащения диагностические стенды Bosch позволяют проводить испытания насосов любых поколений. Новый комплект оборудования Bosch для ремонта ТНВД CP4 позволяет производить проверку, полную разборку и ремонт насоса в точном соответствии с утвержденной технологией ремонта. В состав комплекта входят специализированные инструменты и инструкции для выполнения требуемых процедур.

Третий этап – до момента окончания впрыска – период прямого горения. Форсунка продолжает впрыскивать топливо, которое сгорает немедленно, контактируя с открытым пламенем в камере сгорания. К этому этапу пламя распространяется уже по всей камере, а давление достигает максимального показателя.

Четвертый этап – до окончания горения – называется догорание. На этом этапе несгоревшее топливо должно полностью сгореть. Поршень движется вниз, в результате давление и температура падают. Однако для полного сгорания топлива нужно высокое давление в камере сгорания, которое обеспечивает самовоспламенение топлива, а также правильный впрыск топлива, произошедший в нужный момент и в требуемом объеме. В противном случае распространение пламени существенно повышает температуру в камере сгорания, и топливо загорается немедленно. А когда впрыск заканчивается, оставшееся топливо продолжает гореть.

В случае, когда давление в цилиндре меняется, водитель может услышать длительный стук или металлический звук. Такое возникает в условиях, когда давление в цилиндре понижается и смеси требуется больше времени, чтобы достичь температуры воспламенения. Из-за низкой компрессии удлиняется период самовоспламенения. И когда смесь все же возгорится, количество топлива в камере будет больше, чем то, что необходимо для нормального режима работы. Одномоментно воспламенится большое количество топлива, что приведет к резкому увеличению давления и росту температуры в камере. По этой причине возникает ударная волна, которая действует на днище поршня и стенки цилиндра и производит металлический стук.

По причине низкой компрессии может возникать и белый дым. Это происходит тогда, когда давление падает и топливо не самовоспламеняется при достижении поршня самой высокой мертвой точки. Когда поршень идет вниз, температура падает, и пламя не успевает распространиться. Дизтопливо продолжает испаряться в периоды прямого горения и догорания. Несгоревшее горючее выбрасывается из цилиндра в конце периода дожига, и именно поэтому возникает белый дым. Он может также появиться при позднем впрыске топлива. Компрессия и температура в камере сгорания достигают необходимого уровня, однако из-за слишком позднего впрыска у топлива не остается достаточно времени для того, чтобы испариться. И тогда воспламенение дизтоплива происходит, когда поршень начинает движение вниз. В этот момент давление и температура начинают падать, и пламя не успевает распространиться по всей камере сгорания, а потому и горение быстро прекращается. При этом испарение топлива продолжается, и его несгоревший остаток выбрасывается из цилиндра.

По причине большого объема впрыскиваемого топлива возникает черный дым. Если в камеру сгорания впрыскивается нормальный объем топлива, капли перемешиваются с воздухом, и топливо эффективно сгорает. Но при большом количестве топлива в условиях ограниченного объема кислород в камере полностью выгорает в период горения, а у оставшегося топлива просто не остается достаточно воздуха для перемешивания. А несгоревшее топливо преобразуется в углерод, который и вызывает черный дым.

Повысить КПД

Современные конструкторы ищут способы, чтобы увеличить КПД дизельного двигателя и понизить при этом токсичность отработавших газов в течение всего срока службы автомобиля. Одним из способов повысить КПД двигателя и снизить уровень вредных выбросов является более точное управление системой впрыска топлива. Дизельные форсунки могут распылять топливо до 10 раз в каждом рабочем цикле двигателя, поэтому прецизионное управление каждым отдельным моментом впрыска позволяет еще больше повысить топливную экономичность, снизить уровень вредных выбросов и уменьшить уровень шума в течение всего срока службы двигателя.

Инженеры Delphi разработали технологию управления насос-форсункой с обратной связью, реализуемую посредством аппаратного и программного обеспечения. С ее помощью поддерживается максимальная эффективность впрыска в течение продолжительного времени. Это достигается за счет использования дополнительного электрического провода внутри корпуса насос-форсунки, игла которой действует в качестве «электрического выключателя». Данный процесс обеспечивает передачу сигнала управления в реальном времени, что является более точным и более экономически выгодным решением, чем те, что реализованы в аналогичных системах.

Посылая электрический ток по игле распылителя, Delphi распознает моменты контакта иглы с седлом, ограничителем подъема или нахождения между этими двумя положениями. Этот процесс позволяет системе непрерывно перекалибровывать все моменты подачи топлива на протяжении всего срока службы автомобиля. Сочетание электрического выключателя и нового алгоритма управления создает уникальное решение, которое обеспечивает высокую точность многофазного впрыска. Такая конструкция работает независимо от настроек параметров впрыска и сгорания топлива, а также сложности конструкции двигателя или силовой установки.

Использование в конструкции форсунки «выключателя» и нового алгоритма работы электронного блока управления позволило инженерам добиться снижения уровня вредных выбросов и предложить эффективное решение для сложных технических задач.

Понравилась статья? Поделиться с друзьями: