Двигатель

Рабочий цикл четырехтактного двигателя

Рабочий цикл четырехтактного двигателя

Рабочие циклы четырехтактных двигателей

Рабочий цикл четырехтактного карбюраторного двигателя. Рассмотрим подробно каждый такт цикла.

Такт впуска (рис. 3.3, а). Поршень 2 движется от ВМТ к НМТ, создавая разрежение в полости цилиндра 1 над собой. Впускной клапан 3 при этом открыт, цилиндр через впускную трубу 4 и карбюратор сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распиливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня 2 в НМТ. К этому времени впускной клапан 3 закрывается.

В начале такта впуска, когда поршень был в ВМТ, над поршнем в объеме камеры сгорания имелись остаточные отработавшие газы от предыдущего цикла. Горючая смесь, заполняя цилиндр, перемешивается с остаточными газами и образует рабочую смесь. Давление в конце такта впуска 0,07—0,09 МПа, а температура рабочей смеси 330-390 К.

Рабочий цикл четырехтактного карбюраторного двигателя

Рис. 3.3. Рабочий цикл четырехтактного карбюраторного двигателя:

а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска;

  • 1 — цилиндр; 2— поршень; 3 — впускной клапан; 4 — впускная труба;
  • 5 — свеча зажигания; 6 — выпускной клапан; 7 — выпускная труба

Такт сжатия (рис. 3.3, б). При дальнейшем повороте коленчатого вала поршень 2 движется от НМТ к ВМТ. В это время впускной 3 и выпускной 6 клапаны закрыты, поэтому поршень 2 при своем движении сжимает находящуюся в цилиндре 1 рабочую смесь. В такте сжатия составные части смеси хорошо перемешиваются и нагреваются. Давление — в конце такта сжатия увеличивается до 0,9— 1,2 МПа, а температура — до 500—700 К. В конце такта сжатия между электродами свечи зажигания 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление повышается до 3,0—4,5 МПа, а температура газов (продуктов сгорания) — до 2700 К.

Такт расширения (рис. 3.3, в). Впускной 3 и выпускной 6 клапаны закрыты. Под давлением расширяющихся газов поршень 2 движется от ВМТ к НМТ и при помощи шатуна вращает коленчатый вал, совершая полезную работу. К концу такта расширения давление уменьшается до 0,3—0,4 МПа, а температура — до 1200—1500 К.

Такт выпуска (рис. 3.3, г). Когда поршень подходит к НМТ, открывается выпускной 6 клапан и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 7. Далее поршень 2 движется от НМТ к ВМТ и выталкивает из цилиндра 1 отработавшие газы. К концу такта выпуска давление в цилиндре составляет 0,11—0,12 МПа, а температура — 700-1100 К.

Далее рабочий цикл повторяется.

Рабочий цикл четырехтактного дизеля. В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно (рис. 3.4).

Такт впуска (рис. 3.4, а). Поршень движется от ВМТ к НМТ, впускной клапан открыт, в цилиндр поступает воздух. Давление в конце такта впуска 0,08—0,09 МПа, а температура воздуха — 320—340 К.

Такт сжатия (рис. 3.4, б). Оба клапана закрыты. Поршень движется от НМТ к ВМТ и сжимает воздух. В конце такта сжатия при положении поршня, близком к ВМТ, в цилиндр через форсунку начинается впрыск жидкого топлива. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе. Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и остаточными газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает. Давление газов повышается до 5,5—9,0 МПа, а температура — до 1900—2400 К.

Такт расширения (рис. 3.4, в). Оба клапана закрыты. Поршень движется от ВМТ к НМТ. В начале такта расширения сгорает остальная часть топлива. К концу такта расширения давление газов уменьшается до 0,2—0,3 МПа, а температура — до 900—1200 К.

Рабочий цикл четырехтактного дизельного двигателя

Рис. 3.4. Рабочий цикл четырехтактного дизельного двигателя: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

Такт выпуска (рис. 3.4, г). Выпускной клапан открывается. Поршень движется от НМТ к ВМТ и через открытый клапан выталкивает отработавшие газы в атмосферу. Давление газов при этом 0,11—0,12 МПа. Температура газов к концу такта выпуска составляет 650-900 К.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, закрепляется на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества: на единицу произведенной работы расходует в среднем на 20—25% (по массе) меньше топлива; работает на более дешевом топливе, которое не так опасно в пожарном отношении.

Имеются у дизеля и недостатки: более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля; пуск его затруднен, особенно в зимнее время.

Хорошие экономические показатели дизелей обеспечили широкое применение их в качестве двигателей для тракторов и грузовых автомобилей, а в последнее время наметилась тенденция к применению дизелей на легковых автомобилях.

Рабочие циклы четырехтактных двигателей

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рабочий цикл одноцилиндрового четырехтактного дизеля

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

Читайте также  Можно ли мыть двигатель автомобиля керхером

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

  • на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
  • работа на более дешевом топливе, которое менее пожароопасно

Недостатки дизеля:

  • более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
  • пуск его затруднен, особенно в зимнее время

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Устройство и принцип работы четырехтактного двигателя

Двигатели

Знать, как работает четырехтактный двигатель полезно каждому автомобилисту: чем понятнее устройство транспортного средства, тем проще поддерживать его исправное техническое состояние.

История и принцип работы четырехтактного ДВС

Тактом при работе ДВС называется один ход поршня (вверх или вниз), таким образом 4 тактный двигатель — это мотор, который совершает один рабочий цикл за четыре такта (два полных хода поршня). Четырехтактными могут быть не только автомобильные, но и лодочные моторы, а также силовые агрегаты мопедов, мотоциклов, квадроциклов или мотоблоков.

p, blockquote 3,0,0,0,0 —>

Четырехтактный ДВС в разрезе

История создания ДВС

Официально принцип работы четырехтактного двигателя был запатентован в 1861 году французским инженером Алфоном де Роше. Ранее, примерно в 1854 году два итальянских специалиста — Феличе Матоцци и Евгенио Барсанти создали похожую конструкцию, но данные об этом моторе были утеряны.

p, blockquote 5,0,0,0,0 —>

Первый четырехтактный силовой агрегат, который мог использоваться на практике, сконструировал немецкий изобретатель Николас Отто. С тех пор 4-тактный мотор, в котором топливная смесь воспламеняется от свечей зажигания, называется также двигателем Отто.

Двигатель Отто

Схема двигателя Отто p, blockquote 6,0,1,0,0 —>

Спустя 8 лет после выхода первого прототипа фирма Отто производила уже около 600 четырехтактных моторов в год.

Как четырехтактные двигатели попали в автомобилестроение

Инженер Готлиб Даймлер, который трудился в компании Отто, первым понял потенциал изобретения своего шефа для частного транспорта, и предложил на создать на базе конструкции автомобиль. Отто не был впечатлен идеями подчиненного: Даймер в 1880 году был уволен вместе со своим другом — конструктором Вильгельмом Майбахом и открыл свою компанию.

p, blockquote 8,0,0,0,0 —>

В 1886 году независимо друг от друга компания Daimler и другой немецкий инженер Карл Бенц представили обществу модели самоходного автомобиля, основанные на ДВС Отто, на принципе которого функционирует и большинство современных машин, кроме электрокаров.

Грузовик DMG 1896

Грузовик Daimler-Motoren-Gesellschaft, 1896 год. p, blockquote 9,0,0,0,0 —>

С 1895 года автомобили Daimler-Motoren-Gesellschaft начали продавать и в России.

Отличие четырехтактного мотора от двухтактного

В двухтактном моторе один рабочий цикл происходит за два движения поршня, позволяя в теории получать в 1,5 раза большую мощность. Но на практике он оказывается менее экономичным, так как не имеет отдельных циклов выпуска и впуска, и часть топлива теряется, смешиваясь с отработкой. К тому же, такой движок не оснащен системой смазки и жидкостного охлаждения, поэтому он производит больше шума и быстрее перегревается при высоких нагрузках.

p, blockquote 11,0,0,0,0 —>

Ответ на вопрос какой мотор лучше: двух- или четырехтактный зависит от области применения устройства. Если требуется небольшой и легкий силовой агрегат, то лучший выбор — двухтактный движок. Для механизмов, у которых мощность, бесшумность и экономичность важнее габаритов и простоты обслуживания идеально подходит конструкция на четыре такта.

Как устроен и работает четырехтактный движок

Работа 4 тактного двигателя позволяет вращать коленчатый вал, который через кривошипно-шатунный механизм передает движение на колесный привод транспортного средства. Простейшая одноцилиндровая конструкция состоит из:

  • металлического корпуса, состоящего из крышки и блока цилиндров;
  • цилиндра, внутри которого вверх и вниз перемещается поршень;
  • впускного и выпускного клапанов, подающих в камеру сгорания топливную смесь и отводящих отработанные газы;
  • поршня, который сжимает топливную смесь, провоцируя воспламенение, а также проворачивает маховик коленчатого вала и, соответственно, колеса транспортного средства;
  • свечи зажигания, подающей в цилиндр искру, поджигающую горючую смесь (на бензиновых моделях);
  • системы подачи масла внутрь силового агрегата для смазки и охлаждения движущихся частей;
  • контура жидкостного охлаждения, отводящего излишнее от мотора излишнее тепло.

Противовес коленчатого вала необходим для устранения биений из-за неравномерного распределения импульса, который возникает вследствие того, что воспламенение происходит не каждый, а через один оборот коленвала.

Как работает четырехтактный двигатель:

  1. Впуск (от 0 до 180 о проворота кривошипа): поршень опускается до нижней мертвой точки (НМТ), одновременно с этим открывается впускное отверстие и в движок поступает смесь топлива и кислорода.
  2. Сжатие (от 180 до 360 о ): поршень поднимается до верхней мертвой точки (ВМТ), сжимая находящуюся внутри топливную смесь.
  3. Рабочий ход (от 360 до 540 о ): топливо внутри цилиндра воспламеняется от свечи зажигания (либо от температуры — на дизелях) и поршень силой получившегося взрыва снова отбрасывается вниз. Третий такт называется рабочим, потому что именно в нем поршень совершает полезную работу, передавая коленвалу, и далее — на колесный привод крутящий момент (остальные такты ДВС происходят, наоборот, за счет движения кривошипно-шатунного механизма, поэтому фактический КПД движка такого типа составляет около 40%).
  4. Выпуск (от 540 до 720 о проворота кривошипа): в это время открывается выпускное отверстие, и поршень снова поднимается до ВМТ, выталкивая отработанные газы в выхлопную систему.

Степень сжатия силового агрегата и его компрессия — это не одно и то же. Первое значение — это отношение полного объема цилиндра к объему камеры сгорания, а второе — степень сжатия, умноженная на коэффициент (1,2 — для бензина или 1,7–2,0 — для дизеля).

В чем особенность дизельных силовых агрегатов

Все ДВС можно поделить на две группы по принципу смесеобразования:

  1. Бензиновые (карбюраторные или инжекторные) и газовые — в которых топливо смешивается с воздухом до попадания в цилиндр.
  2. Дизельные — топливо впрыскивается непосредственно в камеру сгорания.

Рабочий цикл четырехтактного двигателя на дизельных силовых агрегатах немного отличен от бензиновых. В камерах сгорания находится кислород, который нагрет до температуры, достаточной для воспламенения топлива. Перед тем, как поршень дойдет до верхней мертвой точки, в цилиндр впрыскивается жидкое дизтопливо, которое форсунки распыляют до мелких капель для более быстрой реакции с нагретым воздухом.

Рабочий цикл дизельного двигателя

4 такта двигателя внутреннего сгорания на дизеле. p, blockquote 18,0,0,0,0 —>

Мощные дизельные силовые агрегаты могут иметь несколько форсунок на один цилиндр.

Многоцилиндровые модели

Чем больше цилиндров имеет четырехтактный двигатель, тем больше суммарный объем камер сгорания, поэтому силовые агрегаты на автомобилях оснащают несколькими цилиндрами. Чаще всего это число бывает четным, для обеспечения баланса установки, но встречаются и трехцилиндровые модели.

p, blockquote 20,0,0,1,0 —>

Классификация многоцилиндровых автомобильных моторов:

  • Рядный — на одном коленчатом вале параллельно друг другу;
  • V-образный — два ряда цилиндров на коленвале, расположенные под углом;
  • VR-образный — аналогичен предыдущему, но имеет меньший угол развала (около 15 о ).

Чтобы многоцилиндровый движок работал равномерно, такты различных цилиндров должны чередоваться в определенной последовательности и через равные промежутки времени. Примерный порядок работы четырехцилиндрового ДВС:

p, blockquote 22,0,0,0,0 —>

Таблица чередования тактов

p, blockquote 23,0,0,0,0 —>

Таблица дана для примера. Порядок работы цилиндров индивидуален для каждой модели силового агрегата, точные цифры можно найти в документации на автомобиль.

Порядок работы цилиндров ВАЗ-2109

Порядок работы цилиндров на ВАЗ-2109. h3 6,0,0,0,0 —>

От чего зависит мощность четырехтактного мотора

Основные параметры, оказывающие влияние на мощность силового агрегата, это:

  • суммарный объем цилиндров;
  • частота вращения коленчатого вала;
  • пропускная способность впускных и выпускных отверстий;
  • уровень сжатия топливной смеси.

Мощность возрастает также и при максимальном наполнении цилиндров, поэтому были изобретены турбины, дополнительно подкачивающие кислород в камеру сгорания.

Турбонаддув

Схема работы наддува турбированного мотора. h2 3,0,0,0,0 —>

Вспомогательные системы

Поскольку 4-тактный движок сложнее 2-тактного, для нормального функционирования он нуждается во вспомогательных системах:

  • Газораспределение — регулирует подачу топливной смеси и вывод отработанных газов при помощи впускных и выпускных клапанов.
  • Смазка — подает в мотор масло, которое уменьшает силу трения механических деталей, охлаждает механизм и выводит продукты сгорания.
  • Топливоподача — система подачи горючего из бензобака в цилиндры. На старых бензиновых моделях создание топливной смеси происходит в карбюраторе, а на инжекторных движках топливо впрыскивается напрямую через форсунки.
  • Зажигание (на бензиновых агрегатах) — система поочередно подает ток с трамблера на каждую свечу зажигания, а оттуда — в камеры сгорания. На некоторых моделях авто (например, ВАЗ 2106) для повышения напряжения, подаваемого на свечи, на трамблере установлен конденсатор.
  • Охлаждение — дополнительный водяной контур, отводящий от мотора излишнее тепло.
  • Выхлопная система — очищает отработанные газы и выводит их в атмосферу.

От правильного давления внутри смазочной системы зависит качество работы и ресурс мотора, поэтому рекомендуется не только полагаться на индикатор давления масла в салоне, но и периодически проводить ручное измерение при помощи манометра.

Принцип работы четырехтактного карбюраторного двигателя

Рабочий цикл четырехтактного двигателя – познаем азы

Чтобы разобраться, что называется рабочим циклом двигателя внутреннего сгорания, необходимо узнать, что обозначает термин такт. Он представляет собой составную часть цикла и осуществляется в течение однократного хода поршня. В зависимости от количества тактов или ходов поршня, все двигатели разделяются на четырехтактные и двухтактные. В первом случае рабочий цикл от начала до конца осуществляет четыре операции: впуск, следом происходит сжатие, потом идет рабочий ход, и завершает все выпуск отработанных газов. В двухтактном варианте все эти действия происходят за два хода поршня.

Читайте также  Нужно ли греть дизельный двигатель

Наиболее распространенным вариантом считается рабочий цикл четырехтактного карбюраторного двигателя. Все процессы здесь проходят вот в какой последовательности: во время первого такта происходит поступление смеси бензина и воздуха. При этом впускной клапан находится в открытом положении, а выпускной – в закрытом. Поступая в разреженное пространство цилиндра, эта смесь перемешивается с предыдущими продуктами сгорания.

От наполнения цилиндра зависит общая мощность двигателя. Сжатие осуществляется в верхней критической отметке, именуемой мертвой точкой, при достижении максимального давления. Расширенные газы отправляют поршень вниз, образуя рабочий ход. В конце всего цикла через специальный выпускной клапан, который к этому моменту открыт, выходят отработанные газы.

Рабочий цикл четырехтактного дизельного двигателя имеет ту же последовательность, что и аналогичный карбюраторный механизм. Основное отличие состоит в способе образования рабочей смеси и ее воспламенении. Этот процесс происходит во время такта сжатия при высокой температуре и давлении во время впрыска топлива через форсунку мотора.

Работа многоцилиндрового двигателя

Во время работы двигателя на его механизмы действуют значительные силы давления газов в цилиндре, силы инерции неравномерно движущихся деталей кривошипно-шатунного механизма, а также центробежные силы, возникающие вследствие вращения деталей. Эти силы непостоянны по величине и направлению своего действия, поэтому они вызывают неравномерную работу двигателя.

При неравномерной работе двигателя его механизмы работают с переменной нагрузкой, вследствие чего происходит интенсивный износ деталей. Особенно велика неравномерность работы одноцилиндрового четырехтактного двигателя.

Для достижения равномерности работы двигателя или устанавливают на коленчатом валу тяжелый маховик, или выполняют его многоцилиндровым.

Маховик накапливает энергию во время рабочего хода и отдает ее при совершении вспомогательных тактов. Но тяжелый маховик применяется только для стационарных двигателей, работающих, как правило, на постоянном режиме. Тяжелый маховик вследствие значительной инерции не обеспечивает необходимой автомобильному двигателю приемистости, т.е. способности двигателя быстро развивать и уменьшать обороты. Поэтому в автомобильных двигателях равномерность работы достигается не увеличением веса маховика, а за счет выполнения двигателя многоцилиндровым. В многоцилиндровом двигателе такты рабочего хода равномерно чередуются в отдельных цилиндрах, вследствие чего в значительной мере уравновешиваются силы инерции, возникающие в кривошипно-шатунном механизме при работе двигателя.

Для обеспечения наибольшей равномерности работы многоцилиндрового двигателя необходимо, чтобы такты рабочего хода в различных цилиндрах чередовались через равные промежутки времени и в определенной последовательности. Эта последовательность повторения одноименных тактов в различных цилиндрах называется порядком работы цилиндров двигателя.

Рис. Таблица чередования тактов четырехцилиндрового четырехтактного двигателя с порядком работы цилиндров 1—2—4—3 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Однако не при любом порядке обеспечивается хорошая работа двигателя. Необходимо, чтобы очередные такты рабочего хода следовали в цилиндрах, наиболее удаленных одни от другого. В этом случае нагрузка на коренные подшипники коленчатого вала будет распределяться более равномерно; кроме того, отработавшие газы из цилиндра, в котором начинается выпуск, не будут попадать через выпускной трубопровод в цилиндр, в котором выпуск еще не закончился.

Наиболее удобными порядками работы автомобильных двигателей являются: для четырехцилиндрового — 1—2—4—3 и 1—3—4—2, для шестицилиндрового — 1—5—3—6—2—4 и для восьмицилиндрового — 1—5—4—2—6—3—7—8.

Порядок работы цилиндров обычно изображается в виде таблицы чередования тактов.

Рассмотрим, как происходит работа четырехтактного четырехцилиндрового двигателя с порядком работы цилиндров 1—2—4—3. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а число рабочих ходов, происходящих за это время, равно четырем, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 180° (720°: 4), т.е. на пол-оборота коленчатого вала, и находятся, таким образом, в одной плоскости.

Во время работы двигателя поршни в первом и четвертом цилиндрах при первом полуобороте первого оборота коленчатого вала перемещаются от верхней мертвой точки к нижней, в первом цилиндре происходит рабочий ход, в четвертом цилиндре — такт впуска. Во втором и третьем цилиндрах поршни перемещаются в это время к верхней мертвой точке, во втором цилиндре происходит такт сжатия, а в третьем — такт выпуска.

Во время второго полуоборота первого оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт выпуска, а в четвертом — такт сжатия. Поршни второго и третьего цилиндров в это время перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит рабочий ход, в третьем — такт впуска.

Во время первого полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемешаются от верхней мертвой точки к нижней, в первом цилиндре происходит такт впуска, в четвертом — рабочий ход. Поршни второго и третьего цилиндров в это время перемещаются от нижней мертвой точки к верхней, во втором цилиндре происходит такт выпуска, в третьем такт сжатия.

Во время второго полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт сжатия, в четвертом —такт выпуска. Поршни во втором и третьем цилиндрах перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит такт впуска, в третьем — рабочий ход.

Четырехцилиндровый четырехтактный двигатель с порядком работы цилиндров 1—3—4—2 отличается от двигателя с порядком работы 1—2—4—3 лишь конструкцией распределительного механизма, которая определяет несколько иную последовательность открытия и закрытия клапанов и чередования тактов.

Оба порядка работы цилиндров, принятые для отечественных четырехтактных четырехцилиндровых двигателей, полностью равноценны и по равномерности, и по качеству работы двигателей. На отечественных автомобилях широко используются шестицилиндровые двигатели, у которых цилиндры расположены в один ряд. Такие двигатели называются рядными в отличие от двигателей, цилиндры которых расположены в два ряда под некоторым углом один к другому.

В шестицилиндровом рядном двигателе коленчатый вал имеет шесть кривошипов. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а количество рабочих ходов за это время равно шести, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 120° (720°: 6), т. е. на одну треть оборота вала.

Для однорядных шестицилиндровых двигателей применяется следующее расположение кривошипов: 1—6 — вверх, 2—5 — налево, 3—4 — направо, если смотреть со стороны переднего конца вала.

При вращении коленчатого вала поршни в шестицилиндровом двигателе проходят через мертвые точки не все одновременно, как в четырехцилиндровом двигателе, а только попарно. Поэтому и такты во всех цилиндрах начинаются и кончаются также не одновременно, а смещены в одной паре цилиндров относительно другой на 60°.

Перекрытие тактов и порядок чередования рабочих ходов в шестицилиндровом четырехтактном двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов шестицилиндрового четырехтактного двигателя с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Особенностью двухтактных дизелей является то, что их рабочий цикл совершается за один оборот коленчатого вала (360°). Поэтому и взаимное расположение кривошипов коленчатых валов имеет свои особенности: в четырехцилиндровом двигателе кривошипы смещены один относительно другого на 90° (360°: 4), в шестицилиндровом — на 60° (360°: 6).

Читайте также  Дэу эсперо двигатель

Рис. Таблица чередования тактов шестицилиндрового двухтактного дизеля с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Перекрытие тактов и порядок чередования рабочих ходов в двухтактном шестицилиндровом дизеле показаны в таблице на рисунке.

В настоящее время на автомобилях широкое применение получили восьмицилиндровые V-образные двигатели. Цилиндры у этих двигателей располагаются в два ряда, чаще всего под углом 90°. Коленчатый вал таких двигателей имеет четыре кривошипа, смещенных один относительно другого на 90°. На каждую шейку кривошипа опираются одновременно по два шатуна.

В восьмицилиндровом двигателе за рабочий цикл (720°) совершается восемь рабочих ходов; их чередование, следовательно, происходит через 90° (720°: 8). Порядок работы цилиндров и чередование тактов в восьмицнлиндровом двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов восьмицилиндрового двигателя с порядком работы цилиндров 1—5—4—2—0—3—7—8 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

В многоцилиндровых двигателях вследствие непрерывного чередования рабочих ходов и перекрытия их одного другим обеспечивается более плавное и равномерное вращение коленчатого вала. Многоцилиндровые двигатели работают более устойчиво, без толчков и сотрясений, присущих одноцилиндровым двигателям.

Вперед Оценочные параметры двигателя

Назад Рабочий цикл двигателя

Добавить комментарий Отменить ответ

Двухтактный двигатель – особенности работы

Если рассматривать двухтактный двигатель, следует отметить, что газовый топливный обмен совершается при нахождении поршня возле нижней предельной точки (мертвой), несколько не доходя до нее. Отработанные газы начинают удаляться из цилиндра при изменении их объема за небольшой промежуток времени. Очистка цилиндра в классическом двухтактном двигателе производится с помощью продувки воздуха, поступающего через компрессор.

Во время продувки воздух частично удаляется, а выпуск отработанных газов производится с помощью выпускных окон до того, как они будут закрыты поршнем. После этого наступает начало процесса сжатия, протекающего, как и в обычном четырехтактном двигателе. При движении поршня снизу вверх происходит перекрытие продувочных окон, после чего воздух из компрессора в цилиндр уже не подается.

Рабочий цикл четырехтактного карбюраторного двигателя

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.

Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:

четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,

двухтактные,в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

– впуск горючей смеси,

– сжатие рабочей смеси,

– выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси(рис. 8а).

Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси(рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – "степень сжатия" (например 8,5). А что это такое?

Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход(рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов(рис. 8г).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск. и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик(рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.

Рис. 9. Коленчатый вал двигателя с маховиком:1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button