Двигатель

Температура горения газа и бензина в двигателе

Температура горения газа и бензина в двигателе

Почему моторы авто, работающие на газе, греются сильнее, чем бензиновые

Считается, что ключевым моментом при переводе автомобиля на газ является экономический аспект. Что вполне объяснимо, поскольку газ практически в два раза дешевле высокооктанового бензина и его, что очень важно, можно использовать даже в самых современных автомобилях.

В ряде европейских стран (например, в Бельгии и Германии) переоборудование автомобилей под газомоторное топливо является весьма распространенным способом сэкономить на эксплуатации автотранспорта, причем без какого-либо вреда для экологии. А в Южной Корее практически все «таксишные» авто и вовсе сходят конвейера уже с топливной аппаратурой, приспособленной для работы на газе-бензине.

Что касается нашей страны, то последний принятый у нас техрегламент заставляет автовладельцев регистрировать газовое оборудование в машине, что несколько сдерживает рост газифицированного автопарка. Однако, с другой стороны, российское правительство с лета нынешнего года запустило государственную программу льготного субсидирования при переводе бензиновых авто на метан.

Напомним, что в ходе реализации этой программы, владельцу машины вроде как обязаны компенсировать до 90% стоимости установленного газового оборудования. Правда, программа действует не во всех регионах, да и получение самой компенсации потребует определенных моральных и временных затрат, связанных с хождением по инстанциям.

Впрочем, купить автомобиль с метановым ГБО в России уже можно непосредственно с завода (через дилера), однако применительно к легковушкам выбор тут весьма ограничен. Например, сегодня это может быть продукция АВТОВАЗа, например, LADA Largus CNG или Vesta CNG. Кроме того, готовятся к выпуску «газовые» модификации Renaul Logan, и есть сведения, что сейчас «обкатку» проходит заводская газовая версия KIA Rio.

Но, все равно, считают эксперты, этого явно недостаточно. И потом, к сожалению, ценники на заводские версии не радуют. Так, например, Vesta с фирменным ГБО стоит почти на 180 000 рублей дороже бензинового аналога.

Хитрости при замене моторного масла, о которых мало, кто знает

Как быстрее всего зарядить сильно разряженный аккумулятор в машине

Еще одно важное преимущество газа — экологичность. Сгорание газа оказывается значительно более чистым, значит и двигатель всегда в чистоте. При этом износ его деталей снижается раза в полтора и, стало быть, ресурс увеличивается примерно на столько же. Уменьшается нагрузка на катализатор, чище выхлоп и, соответственно, воздух на улицах. В общем, плюсы в части экологии и экономии значительные, однако достигнуты они могут быть лишь при соблюдении ряда условий.

Первое — это повышенный контроль за температурой движка. Дело в том, что газ при сгорании выделяет несколько меньше энергии, чем бензин. Значит, его расход будет на 7—10% больше, при тех же нагрузках. А вот температура в цилиндрах при сгорании газа выше, чем при горении бензина.

Это приводит к большему нагреву седел клапанов, самих клапанов и головки блока. Что на двигателях старой классической конструкции зачастую вызывало трещины в тарелках клапанов, «выгорание» седел и повреждения верхней части цилиндров. На современных моторах используются более термостойкие материалы, и такие проблемы хотя и сведены до минимума, но до сих пор полностью не изжиты.

Второй момент — выбор моторного масла. Долгое время считалось, что двигатели, переоборудованные под газ, не нуждаются в специальных маслах. Но современный очищенный газ содержит малое количество серы, влияющей на скорость старения моторного масла. А стало быть, нет необходимости в нейтрализации большого количества агрессивных веществ, образующихся в процессе сгорания.

Для таких случаев подходят масла с низкой щелочностью, а бонусом является то, что низкощелочные масла обладают еще и малой зольностью. То есть дают малое количество абразивных частиц при сгорании и дополнительно уменьшают износ двигателя.

Поэтому для двигателя, переоборудованного под газ, прекрасно подходят масла классов Low SAPS&Mid SAPS, изготовленные на базе термически устойчивого современного гидрокрекинга (НС-синтетические). К таковым, например, следует отнести современные продукты линейки Тор Тес, выпускаемые фирмой Liqui Moly. Они уже поставляются и в Россию, а на их «газовую» спецификацию указывает специальный стикер CNG/LPG.

Готовим машину к зиме: какие расходники надо поменять в первую очередь и не разориться

5 «дырочек» в автомобиле, которые обязательно нужно смазать перед наступлением холодов

Следующий момент — бензин. Именно на нем производится запуск и прогрев двигателя, после чего ГБО переключается на газ. Иначе говоря, бензин расходуется крайне медленно, отчего он застаивается в форсунках, топливной рампе и в баке. В итоге там создаются условия для термической деградации горючего с образованием смол и шламов, а в баке и вовсе может произойти расслоение топлива.

Чтобы не допускать этого, следует регулярно пользоваться очистителями системы впрыска, а в бак добавлять присадку, препятствующую расслоению горючего. Такими средствами, например, могут служить очиститель инжектора Langzeit Injection Reiniger, а также стабилизатор бензина от уже упомянутой выше Liqui Moly.

Наконец, еще один важный нюанс — утечки газа, отчего любой автовладелец сразу же впадает в беспокойство. Проблема эта решаема, главное тут — понять, откуда именно идет утечка. А быстро определить место дефекта поможет спрей Leck-Such-Spray. Выяснив это, водитель может сам подтянуть нужные соединения и ликвидировать утечку. Поэтому такой баллончик надо обязательно иметь в багажнике любого «газового» авто.

Топливная смесь

Топливная смесь 2012-08-1.jpg

Современная система управления двигателем следит за тем, чтобы в его цилиндрах сгорала экологически чистая топливовоздушная смесь. Но некоторые автомобилисты, меняя прошивки, в том числе, влияющие на состав смеси, хотят добиться еще большей мощности или меньшего расхода топлива.
Законы физики едины для любой техники. Но то, что в поршневом двигателе скрыто от наших глаз, в реактивном порой видно снаружи. Особенно ярко — на самолетных газотурбинных двигателях. У отлично настроенного двигателя АЛ-31 пламя форсажа не желтоватое, как на двигателях многих других фирм, а прозрачно-синее, что говорит о высокой чистоте сгорания, меньшем расходе топлива. Вот только добиться такого результата, не ухудшая устойчивости работы двигателя, далеко не просто.
Вот так горит топливо и в первоклассном автомобильном двигателе. Современный автомобильный двигатель, получив подобную «идеологию», основательно поумнел. Избавляя человека от забот, машина сама себя диагностирует, сообщает о «болячках», подсказывает, когда ехать к мастерам.
В России любое горючее вещество – бензин, керосин, солярку, спирт, газ – народ называет топливом, хотя ничто не может гореть без окислителя. Чаще всего это кислород воздуха. Что же и как полыхает в цилиндрах широко распространенных бензиновых двигателей?
Распыленное форсунками горючее испаряется в каналах перед впускными клапанами. В цилиндрах же сгорает газообразная рабочая смесь горючего и воздуха. Она «гомогенная» (одного состава по всему объему), – такую электронной системе управления двигателем (ЭСУД) проще контролировать. Но если у кого-то еще трудится карбюраторный автомобиль, то многое справедливо и для него, – разница лишь в способах регулирования режимов работы.
В частности, для надежного воспламенения важно, как соотносятся в рабочей смеси массы воздуха и горючего. Смесь из 14,7 г воздуха и 1 г бензина называют стехиометрической. Воздуха ровно столько, сколько нужно для полного сгорания бензина. Отклонения от этого идеала для удобства оценивают так называемым коэффициентом избытка воздуха λ. В нашем примере. Если λ больше единицы, смесь называют бедной, меньше – богатой. При λ = 1 возможна полноценная окислительная реакция, не оставляющая неиспользованных компонентов. В отработавших газах (до первого датчика кислорода в системе выпуска) два основных продукта сгорания – углекислый газ СО2 (13,7 % по объему) и водяной пар H2O (13,1 %). Азот воздуха не горюч, – этот балласт занимает 71,5%. Правда, в реальном двигателе не все так гладко, как в теории. Даже при сжигании стехиометрической смеси в отработавших газах присутствуют СО (до 0,7 %) и СН (до 0,2 %). А на режимах с высокими температурами могут появиться и токсичные оксиды азота NOx – около 0,1 %.
С этими дозами ядов трехкомпонентный каталитический нейтрализатор справляется практически стопроцентно, это его штатный режим работы. Первые два он «доокислит» (дожжет), а оксиды NOx восстановит до безвредного азота N2.
Карбюратор и при самой грамотной регулировке не может гарантировать стехиометрии даже на основных режимах работы, не говоря уже о переходных. Отсюда экологические проблемы. Это основная причина того, что о карбюраторах (при всей их простоте и привлекательности для кого-то) автомобильный мир постепенно забывает.
Но убавим немного воздуха. При λ = 0,8. 0,9 получается смесь для режимов высокой мощности, ибо скорость ее сгорания самая высокая. Но некоторая часть «заряда» в цилиндре не успевает прореагировать, доли СО и СН, как и расход топлива, несколько выше, чем при стехиометрии.
Еще меньше воздуха? Слишком богатая смесь горит неэффективно. Расход топлива велик, мощность снижена, в отработавших газах много токсичных продуктов – СО, СН и С. Первый из них – окись углерода, «угарный газ без цвета и запаха». Из-за дефицита кислорода он «недоокислился» до СО2. Второй – «углеводороды», пары горючего, не успевшие воспламениться и выброшенные в трубу. Третий – появившиеся в ходе реакций частицы углерода (черная копоть), которым тоже не хватило воздуха, чтобы догореть.
Копоть нарушает работу свечей – угольные «мостики» прерывают искрообразование – и в нейтрализаторе дожигается слишком много топлива, он перегревается, а при температурах свыше 1000 о С ему приходит конец. Поэтому система самодиагностики, обнаружив, что в каком-то цилиндре слишком много пропусков воспламенения, отключает его форсунку – и сигнализирует: «проверь двигатель!»
Ну а если окислителя так мало, что смесь невозможно зажечь, ее называют переобогащенной. Именно поэтому плотные бензиновые пары в баке не взрываются даже при неисправном, сильно искрящем электрическом указателе уровня топлива.
Начнем обеднять смесь, добавляя к стехиометрической воздуха. Смесь с λ = 1,05. 1,1 обеспечивает наилучшую экономичность, но с ощутимым недобором мощности. Такая смесь горит медленней, а лишний воздух равносилен балласту, уносящему в трубу часть полезной теплоты. При сильном обеднении смеси (в основном, у двигателей с непосредственным впрыском топлива в цилиндры) начинают так быстро расти выбросы NOx ,что обычный нейтрализатор с ними не справляется. Это сильно усложняет систему очистки отработавших газов. Но для двигателей, работающих преимущественно при стехиометрии (то есть обычных инжекторных) эта тема не актуальна. Наконец, смесь, в которой так много воздуха, что она не воспламеняется, называют переобедненной. Так, если при резком открытии дросселя мотор «проваливает», – значит, впрыск топлива не поспевает за поступлением воздуха. Хорошо известная причина – засорение топливного фильтра на входе в бензонасос!
Итак, сегодня для наиболее распространенных инжекторных двигателей оптимальной считается стехиометрическая смесь. Такова их основная настройка, прописанная в так называемых «заводских прошивках». Экономичность и мощность двигателя – на приемлемом уровне, вреда для экологии минимум. Ну а знать или не знать, как работает система, ваше личное дело. Немногие представляют себе устройство современного компьютера, а пользуются же! Важно вовремя замечать неполадки, – а устранить их обязан сервис.
Для простоты укрепления знаний можно обратиться к житейским примерам, – например, к газовой плите или деревенской печке. Если при работающем двигателе уменьшить подачу воздуха, закрыв дроссель, то ЭСУД синхронно снизит подачу топлива. А кухонная печка начнет выделять угарный газ СО.
О том, что угарного газа выделялось много, говорят черные, обугленные головешки. Почему уголь не сгорел? – Не хватило кислорода. Значит, оксида углерода СО было немало. Будь в печи пламя, как в кузнечном горне, – белое, ревущее – остался бы в ней только светлый (минеральный, не горючий) пепел.
Ну а с выстуженной печкой обращение иное. С поверхности холодных дров летучие углеводороды испаряются слабо. А цепная реакция горения устойчива и вообще возможна лишь при условии, что температура в очаге быстро достигнет градусов 800. Поэтому начинать растопку надо с мелкого топлива, но в большом количестве, чтобы поверхность горения была как можно большей. Это сухой хворост, стружки, щепки, береста, газеты. Налицо немало общего с двигателем.
Напомним, при пуске совсем холодного бензин слабо испаряется – и получить нужный состав смеси, не прибегая к каким-то дополнительным мерам, затруднительно. Поэтому контроллер прикажет форсункам настолько увеличить подачу бензина, чтобы смесь в цилиндрах смогла воспламеняться. А по мере прогрева двигателя расход топлива, в соответствии с «прошивкой мозгов», по определенному закону снижается.
Но печка – это пример «дикого», неорганизованного, горения. Гораздо показательнее экспериментировать с газовой горелкой. Бедную газо-воздушную смесь иной раз и не запалишь: хлопок – а огня нет! Если же загорится, то шумно, неустойчиво, временами даже отрываясь от горелки.
На снимках – опыты с портативной горелкой. При минимальном притоке воздуха богатая смесь от пьезо-искорки даже не загорается. От спички – неохотно. Пламя желтоватое, вялое – сразу закоптило наш стальной стержень. Затем прибавили воздуха – и получили смесь, которая отлично загорается от искры. Пламя голубое, ровное, горячее, копоти нет, стержень нагрелся докрасна. Вот эта регулировка – наилучшая.
Всякий двигатель, сжигающий топливо, неспроста называют тепловым – в нем есть та же «печка», только с лучше организованной работой. И задача, по большому счету, та же: максимум эффективности при минимуме вреда. Остается напомнить (см. график): невозможно при одном и том же составе смеси одновременно добиться максимума мощности и минимума расхода топлива. Посему оптимальной для наиболее распространенных инжекторных двигателей считается стехиометрическая смесь. С нею и мощность достаточная, и экономичность приемлемая, и вред природе – минимальный.

Читайте также  Ремонт дизельный двигатель

Подписи к фото:
1. Так горит богатая газово-воздушная смесь. Пламя горелки желтоватое и, в сравнении с правильной регулировкой, – «прохладное». Подопытный стержень закопчен.
2. Сжигаем газово-воздушную смесь оптимального состава. Пламя голубое, стержень нагрет докрасна. А позади него пламя уже не голубое – оно подсвечено частицами окалины и т. п., отрывающимися от поверхности металла.

Работа двигателя во время езды на газу. Технические решения для снижения рисков прогара клапанов.

Работа двигателя во время езды на газу. Технические решения для снижения рисков прогара клапанов.

Что такое газ и что происходит во время горения газа? Сжиженный нефтяной газ (пропан-бутан) является производной нефти и по параметрам горения очень похож с бензином. Основное отличие газа и бензина – его плотность: 1 литр пропан-бутана имеет удельный вес около 0,5 кг, 1 литр бензина около 0,75 кг. Из-за этого на нормально работающей системе расход газа на 10-20 % выше бензинового.

Есть мнение, что газ «сушит», приводит к ускоренному износу двигателя. Эта «страшилка» не соответствует действительности и идет со времен, когда использовалось еще простое газовое оборудование. В карбюраторе находились резиновые уплотнители, которые при подаче газа рассыхались, так как газ более агрессивно действует на резину, чем бензин. В современных двигателях с инжекторной системой подачи топлива резиновых уплотнителей, с которыми газ вступал бы в прямой контакт – нет. Поэтому современный двигатель газ – не “сушит”.

В последние годы газобаллонное оборудование абсолютно нормально работает на всех двигателях и при нормальной эксплуатации ресурс двигателя зачастую выше. И можно смело заявлять о возможности установки газового оборудования на любой двигатель внутреннего сгорания.
Скорость горения пропан-бутана почти равна бензиновой, однако есть одна очень важная характеристика газа… Жидкий бензин, попадая на впускные клапана, на стенки цилиндра и поршень, испаряется, а также поглощает температуру.

При повышенных нагрузках на двигатель это свойство часто используется автомобильными конструкторами, чтобы снять температурную нагрузку с двигателя (при этом растет расход бензина пропорционально скорости). В отличии от бензина, газ попадает в камеру сгорания в испаренном виде (начиная с 5 поколения ГБО он испаряется во впускном коллекторе). Поэтому при повышенных нагрузках газ не способен так же хорошо снимать термо нагрузку в двигателе. И это может привести к более быстрому износу клапанов и седел в головке блока цилиндра.

На практике это происходит так: Вы часами едете на скоростях свыше 150 км в час, при этом кратковременные обгоны не в счет. Двигатель работает в режиме повышенной нагрузки в котором, на бензине, подается топливо в излишке (богатая смесь) чтобы “охладить” поршневую группу. Газ на это не способен и металл начинает нагреваться до более высоких температур.

Это приводит к тому, что процесс износа металла ускоряется, и он становиться менее прочным. У автомобилей, которые ездят на трассе быстро и без наблюдения при плановом обслуживании ГБО могут появиться определенные сложности уже через 70-100 тыс. км пробега в виде тяжелого запуска двигателя/вибраций на холостом ходе и впоследствии прогара клапанов. У городских автомобилей таких проблем практически нет.

ПРИ РЕШЕНИИ УСТАНОВИТЬ ГБО ГЛАВНОЕ ЗАПОМНИТЬ ВАЖНЫЙ МОМЕНТ: Газовое оборудование ставится, чтобы экономить. Для спортивной езды (как стиля вождения) газ не подходит. Чтобы избежать прогара клапанов при езде на газе, необходимо избегать повышенных скоростей.

  • Повышенные скорости для бюджетных и среднего класса автомобилей – это 135+ кмчас.
  • Повышенные скорости для автомобилей премиум класса 150-170 кмчас.
  • Для автомобилей немецкой автомобильной промышленности 190-220 кмчас.

Какие возможные технические решения для снижения рисков прогара клапанов при езде на газе?

Решение №1 Исключение механических и электронных погрешностей ГБО.

В газобаллонном оборудовании BRC, благодаря тому, что все компоненты были разработаны одним производителем, возможно использование очень сложных и тонких алгоритмов, которые позволяют избежать проблем с клапанами, а именно:
1. Высокоточная электроника точно и быстро производит расчет необходимой порции газа для каждого отдельного цилиндра
2. Газовый редуктор точно и стабильно обеспечивает подачу подогретого должным образом газа при постоянном давлении.
3. Газовые форсунки не подвержены загрязнению и тем самым сохраняют свои первоначальные параметры многие годы (но помните, что нужно раз в 10 тысяч км производить плановую замену фильтров). Так как в газовом блоке управления содержится информация о параметрах производительности форсунки, возможно применение очень интересного алгоритма сохранения клапанов (головки блока цилиндра)

Решение №2 Внедрение специальных алгоритмов в газовой электронике.

Это очень интересный момент, который раньше практиковался в ручном режиме с меньшей точностью из-за того, что использовались постоянно разные комплектующие, с разбросом характеристик.

В электронике ГБО BRC было применено два очень точных и продуманных алгоритма.
Алгоритм №1 VSR – Valve Seat Recession ( дословно “усадка седел клапанов”). Суть данного алгоритма в том, что установщик выставляет (если знает что и как делать) порог оборотов и нагрузки двигателя, после которых газовый блок управления ГБО начинает замещать часть газа и подавать вместо него порцию бензина.
Внимание: двигатель не переходит на бензин выше определенных оборотов…вместо этого происходит подача микро доз бензина и только при достижении определенной нагрузки. Этот алгоритм возможно реализовать только, если вы знаете точную дозировку газовой форсунки, характеристики редуктора. С ГБО BRC это возможно. Так же благодаря этому режиму возможна установка ГБО на скоростные/спортивные автомобиля без ущерба ресурсу.

Читайте также  Нестабильная работа двигателя на холостом ходу

Алгоритм №2 Leaning in open loop strategy (дословно “обеднение смеси при разорванной петле” лямбда регулирования). Подавая в избыточном количестве бензин, он будет отбирать тепло с мест, где слишком жарко(во время испарения). На газе этого сделать эффективно не удастся (на 6 поколении ГБО это возможно), так как в камеру сгорания он попадает уже испаренным. При этом в прямом смысле газ при повышенных нагрузках вылетает в выхлопную трубу и нагружает катализатор (который должен дожечь избыточное топливо). Суть данного алгоритма в том, что установщик может убрать излишки газа в режимах повышенных нагрузок, а газовая электроника это сможет четко реализовать. На некоторых автомобилях речь идет о 20, а иногда и о 30% уменьшения расхода на газе на режимах разгона и повышенной нагрузке. Именно поэтому на ГБО BRC, возможно очень точно настроить параметры расхода газа.

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Читайте также  При запуске двигателя слышен щелчок но стартер не крутит

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.

Какова температура горения бензина?

Чаще всего ГБО устанавливается на автомобили с бензиновым двигателем. В качестве топлива для таких систем используется смесь газов пропана, метана и бутана. При этом метан является природным газом, а бутан – это продукт перегонки нефти.

Данная технология дает ощутимую экономию по сравнению с основными видами современного автомобильного топлива. Кроме того, газ при сгорании дает выхлоп намного чище бензинового. На внутренних деталях двигателя практически не образуется нагар и отложения, поскольку газ не содержит смолы, парафин, свинец, серу. Данная особенность способствует увеличению обязательных интервалов замены моторного масла, которое более длительное время остается чистым.

Высокое октановое число, устойчивость газовой смеси к детонации снижает нагрузку на элементы моторной поршневой группы. Параллельная с бензиновой топливной системой установка ГБО повышает надежность авто, увеличивает запас его хода.

При отсоединении коммутатора завести двигатель не удастся, поэтому такие методы обеспечат надежную защиту автомобиля от угона. Газобаллонное оборудование не содержит дорогостоящих деталей, требующих периодического ремонта. Поэтому в системе по большому счету ничего не ломается. Кроме того, газовую смесь нельзя слить из баллона и продать.

Метан или пропан-бутан что лучше выбрать?

Выбор двух разных газовоздушных смесей

У двигателей внутреннего сгорания есть возможность применять вместо бензина или солярки две различные разновидности газового топлива: сжиженный углеводородный (он же нефтяной) газ или компримированный (сжиженный) природный газ. Первый представляет собой смесь, где пропан соединен с незначительным количеством бутана, а второй содержит простейший встречающийся в первозданном виде в природе углеводород — метан.

В чем разница между ними, и какой вариант газа выгоднее для автовладельца? Ответить на эти ключевые вопросы поначалу не так легко однозначно — чтобы говорить о предпочтительности пропана или метана, необходимо детально изучить структуру и принцип работы обоих видов газов.

Удаление царапин на кузове автомобиля без покраски.

НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.

Оценив объективно преимущества и недостатки каждого варианта, уже можно будет остановиться на выборе одного из них, взвесить все «за» и «против» и сделать осознанный рациональный выбор.

Мнение, популярное в среде автовладельцев, активно использующих ГБО, о том, что смесь пропан-бутан в транспорте применять лучше метана, в свете современной практики звучит устаревшим. Совершенствование технологий, подогретое постоянной жестокой конкуренцией на рынке энергетических ресурсов, продвигается с каждым днем, и в данный момент можно говорить о том, что по отношению к старым весомым недостаткам газобаллонное оборудование нивелировалось: оборудование под метан теперь ненамного тяжелее, чем под пропан, и баллоны стали поскромнее в плане размеров. Стоимость на комплектующие метановым ГО машины детали по-прежнему кусается — почти в два раза больше. Но нужно при этом помнить, что расходная сумма, потраченная на метановое ГБО, в ущерб пропановому отобьётся большей экономией и не помешает в итоге ездить, наслаждаясь всеми прелестями газа.

Заключение

Безусловно, что после сравнения видов газового топлива выбор остаётся за владельцем транспортного средства. Именно он принимает решение и сам определяет, какое газовое оборудование лучше выбрать, ведь всё очень индивидуально. Ко всему прочему перечисленные показатели зависят от ряда факторов:

  • поколения оборудований;
  • правильность и своевременность регулировки, обслуживания установки;
  • манера вождения транспортного средства;
  • климатические, а также географические условия эксплуатации.

Сравнительная таблица основных отличий метана от пропана

Фактор ГБО пропан ГБО метан
1 Стоимость ГБО низкая высокая
2 Цена на топливо дороже дешевле
3 Расход относительно бензина больше меньше
4 Показатели веса легче тяжелее
5 Запас горючего больше меньше
8 Давление газа в баллонах 12-15 атмосфер 200-250 атмосфер
9 Вредные выбросы есть нет
10 Падение мощности нет есть
11 Доступность пунктов заправок практически на уровне бензиновых заправок не более 2-3 на крупный населённый пункт
12 Окупаемость быстрее медленнее
13 Тех. обслуживание чаще реже

Зачем изменять параметр октана?

При низком октановом числе бензин может воспламеняться много раньше, чем это необходимо. В таком случае мощность двигателя снижается, появляется хорошо известный многим автолюбителям процесс детонации.

Кроме этого, применение низкооктанового бензина приводит к детонации двигателя, сокращению срока службы целой группы его основных элементов – седел, клапанов, свечей и так далее. Если злоупотреблять топливом низкого качества, то капремонт двигателя придется делать намного раньше срока.

Так что для повышения качества бензина и существенного улучшения его эксплуатационных качеств, повышать октановое число все-таки нужно.

Как это делается? В чем особенности каждого из методов? Именно об этом мы и поговорим более подробно.

Заключение

В заключение следует отметить, что ГБО пропан предпочтительнее устанавливать на городские седаны. Это поможет значительно съэкономить на топливе, не потерять в динамике и размере багажника.

Если же Вы рассматриваете вариант установки газа на грузовое авто, бус, или даже внедорожник, то здесь предпочтение стоит отдать метану. Для коммерческих целей установка природного газа на грузовой автомобиль будет экономически оправдана. А благодаря размерам автомобиля, и мощности двигателя метановая установка на грузовом автомобиле будет практически не ощутима.

А что Вы думает по поводу плюсом и минусов того или иного вида топлива? Оставляйте свои комментарии, и удачи Вам на дорогах!

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button