Приемистость двигателя это
Приемистость двигателя это
Устройство автомобилей
Оценить мощностные и экономические возможности двигателя внутреннего сгорания при работе его в различных эксплуатационных условиях можно по техническим и технологическим характеристикам, получаемым в результате различных испытаний – стендовых, дорожных, полигонных, эксплуатационных и т. п.
Характеристикой двигателя называется зависимость основных показателей его работы (мощности, вращающего момента на выходном валу, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, внешней нагрузки и т. п.). Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.
Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний»:
скоростная характеристика – зависимость основных эффективных показателей работы двигателя от частоты вращения его коленчатого вала;
коэффициент приспособляемости – способность двигателя преодолевать кратковременные перегрузки;
нагрузочные характеристики – зависимости удельного и часового расхода топлива от мощности, развиваемой двигателем;
характеристика холостого хода – зависимость часового расхода топлива от частоты вращения коленчатого вала при работе двигателя без нагрузки;
регулировочные характеристики – зависимость мощностных и экономических показателей работы от состава рабочей смеси, воспламеняемой в цилиндрах двигателя, угла опережения зажигания или впрыска, температуры двигателя и других регулируемых факторов.
Нагрузочная характеристика
Нагрузочной характеристикой называется изменение часового и удельного расхода топлива в зависимости от величины нагрузки. Работа на режимах нагрузочной характеристики наиболее характерна для двигателей, которые используются для привода электрических агрегатов, насосов, компрессоров, тракторов. В частности, нагрузочная характеристика имитирует работу двигателя на автомобиле, при его движении с постоянной скоростью на одной из передач в условиях переменного сопротивления со стороны дороги.
Цель получения нагрузочной характеристики – определение топливной экономичности двигателя.
Условия получения нагрузочной характеристики:
- независимая переменная величина – нагрузка на двигатель (так как с увеличением нагрузки для ее преодоления двигатель должен увеличивать мощность Nе , среднее эффективное давление ре и крутящий момент Мк , то нагрузку выражают в процентах относительно одного из этих параметров;
- постоянная величина – частота вращения коленчатого вала;
- зависимые переменные величины – удельный расход топлива gе и часовой расход топлива Gt .
Скоростная характеристика
Скоростная характеристика двигателя представляет собой зависимость основных эффективных показателей его работы (эффективная мощность, вращающий момент на выходном валу, удельный и часовой расход топлива) от частоты вращения коленчатого вала при постоянной подаче топлива в цилиндры в установившемся тепловом режиме.
Различают внешнюю и частичные скоростные характеристики.
Скоростная характеристика, полученная при полной подаче топлива (полностью открытой дроссельной заслонке или соответствующем положении рейки топливного насоса дизеля) и при углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней скоростной характеристикой двигателя .
Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках.
Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя . Иными словами, любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой.
Скоростную характеристику реального двигателя строят по результатам стендовых испытаний.
Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент Мт в (Н×м) и часовой расход топлива в кг/ч.
По результатам испытаний строят кривые зависимости эффективного вращающего момента и часового расхода топлива от частоты вращения вала двигателя.
Затем, используя формулы:
находят эффективную мощность и удельный расход топлива, после чего отображают их графические зависимости.
В зависимости от укомплектованности двигателя вспомогательными устройствами и оборудованием определяют мощность нетто (полная комплектация) или мощность брутто (неполная комплектация).
Различают следующие характерные частоты вращения коленчатого вала:
- минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
- частота вращения, соответствующая наибольшему вращающему моменту;
- частота вращения, соответствующая наибольшей мощности двигателя;
- наибольшая возможная частота вращения коленчатого вала, устанавливаемая ограничителем частоты вращения.
Характеристика холостого хода является частным случаем скоростной характеристики двигателя.
Внешнюю скоростную характеристику вновь проектируемого двигателя можно построить по эмпирическим зависимостям, где максимальная мощность и соответствующие ей удельный расход топлива и частота вращения берутся из данных теплового расчета двигателя при его конструировании.
Приемистость и приспособляемость двигателя
Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью .
Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. его способности ускоряться и разгоняться. Скоростная характеристика во многом отражает степень приемистости двигателя: чем круче кривая Nе , тем приемистость двигателя больше.
Если сравнить скоростные характеристики карбюраторного двигателя и дизеля, то можно заметить, что кривая мощности Nе у дизеля круче, т. е. дизель обладает большей приемистостью.
Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его приспособляемостью (самоприспособляемостью или эластичностью).
Например, затяжной подъем один из автомобилей может преодолеть без переключения КПП на пониженную передачу, а другой при таких же условиях заглохнет. Следовательно, в первом случае приспособляемость двигателя автомобиля выше, чем во втором.
Приспособляемость автомобиля к изменению внешней нагрузки оценивается коэффициентом приспособляемости (коэффициентом самоприспособляемости). Чем больше значение этого коэффициента, тем лучше приспособляемость автомобиля к увеличению внешней нагрузки.
Устойчивость режима автомобильного двигателя к увеличению внешней нагрузки оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента Мкmax к крутящему моменту Мкном , развиваемому двигателем на номинальном режиме; это отношение и называют коэффициентом приспособляемости k .
Коэффициент приспособляемости k , характеризующий приспособляемость двигателя к изменению внешней нагрузки, может быть определен по формуле:
В бензиновых двигателях средний коэффициент приспособляемости k = 1,25. 1,35, в дизельных k = 1,05. 1,2.
Поскольку коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач, можно сделать вывод, что дизельные двигатели переносят изменение внешней нагрузки хуже, чем карбюраторные. Чтобы преодолеть этот недостаток дизелей увеличивают размеры цилиндров, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.
ГЛАВА 5. ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ
Наши оппоненты некорректно применяют термины «приемистость» и «приспособляемость» двигателя. В статье «Двигатели для «летающих танков», опубликованной в журнале «Двигатель», и в ранее опубликованных материалах авторы утверждают, что по коэффициенту приемистости ГТД значительно превосходили дизельные двигатели на всех сравнительных испытаниях танков с 1972 по 1987 г. [34].
Приемистость оценивается временем разгона двигателя от режима холостого хода (для ГТД — режима малого газа) до максимальной мощности двигателя.
Приемистость дизельных двигателей В-84 уральских танков составляет 1—2 с.
Приемистость турбокомпрессора ГТД танка Т-80 — 7-8 с [7].
Дизель превосходит ГТД по этому параметру в 3—4 раза.
Необходимо отметить, что с ухудшением показателя приемистости двигателя снижается средняя скорость движения танка по местности и увеличивается расход топлива на один километр пути.
Коэффициент приспособляемости — отношение максимального крутящего момента на валу двигателя на режиме минимально допустимой рабочей частоты вращения выходного вала двигателя к крутящему моменту при частоте вращения вала, соответствующей максимальной мощности двигателя.
По этому показателю ГТД танка Т-80 выигрывает у дизеля танка Т-90С в 1,9 раза (у ГТД-1250 — 2,46 [31]; у турбопоршневого двигателя В-92С2 — до 1,3 [35]).
Коэффициент приспособляемости определяет количество переключений передач при движении танка по трассе.
Оба показателя — «приемистость» и «коэффициент приспособляемости» — влияют на средние скорости движения и топливную экономичность танка, но их влияние на изменение подвижности танка различно.
Для того, чтобы уменьшить влияние низкой приемистости ГТД танка Т-80 и обеспечить максимальное ускорение танка при движении по пересеченной местности, водители практикуют длительный полный выжим педали газа «до пола» или установку рычага сектора ручной подачи топлива в положение «максимум» (обеспечивая максимальную частоту вращения ТК) и управляют скоростью движения танка с помощью штатных тормозных средств (включение тормозов в бортовых коробках передач и торможение двигателем с помощью регулируемого соплового аппарата — РСА).
Следствием этого способа управления двигателем является дополнительный повышенный расход топлива, снижение надежности трансмиссии и возможность травмирования экипажа при резких манипуляциях тормозами.
Лучший коэффициент приспособляемости ГТД, чем у ПД, позволяет в танке Т-80 применять трансмиссию с четырьмя передачами вперед и одной передачей назад. На танке Т-90 — семь передач вперед и одна передача назад. Таким образом, коэффициент приспособляемости оказывает влияние на среднюю скорость танка только опосредованно, снижая утомляемость механика-водителя при пользовании меньшим количеством переключений передач.
Сторонники газотурбинного танка придают этому качеству необоснованно высокое значение, каким-то образом вычислив, что меньшее количество передач обеспечивает снижение утомляемости механика-водителя Т-80 на марше по сравнению с утомляемостью механика-водителя уральского дизельного танка в 3 раза [36].
Это утверждение опровергается «reductio ad absurdum» («приведением к нелепости», как способу доказательства): попробуйте представить мысленно, что после трудного 300-км марша двух рот — танков Т-80У и Т-90 Альберт Дзявго (считающий, что механики-водители Т-80У устали в 3 раза меньше, чем механики-водители танков Т-90) предложил (приказал) экипажам первой роты совершить еще два марша по 300-километрового с прежней скоростью. Предоставим читателю возможность самостоятельно домыслить, какой была бы реакция экипажей танков Т-80У.
Добавим к сказанному, что на последней модификации танка Т-90С завершается подготовка к внедрению в серийное производство автомата переключения передач, повышающего качество системы управления танком и снижающего трудозатраты механика-водителя.
Аналогичные мероприятия проводятся на модернизируемых танках Т-72Б.
В афишируемом качестве газотурбинного танка — малом количестве передач трансмиссии — кроме достоинств имеются и недостатки.
Поворот танков Т-80 и Т-90 с минимальным (фиксированным) радиусом на каждой передаче осуществляется за счет включения в бортовой коробке передач (БКП) передачи на одну ниже на отстающем борту, чем на забегающем. При этом обеспечивается минимальная разность частот вращения ведущих и ведомых дисков фрикционов (нулевая пробуксовка), включаемых на отстающем борту.
Поскольку при четырех передачах в БКП разрыв между передачами больше, чем при семи, очевидно, обеспечивается меньший радиус поворота танка Т-80. Поэтому, во избежание заноса, водитель будет вынужден или снижать скорость танка перед входом в поворот, или поворачивать с увеличенным радиусом за счет пробуксовки дисков фрикционов в БКП. В первом случае из-за низкой приемистости ГТД время разгона танка Т-80 после поворота будет больше, чем у танка Т-90.
Поворот с большими радиусами (наиболее распространенный режим в эксплуатации) осуществляется неполным включением передачи отстающего борта, т.е. за счет пробуксовки дисков фрикционов.
Пробуксовка будет тем значительнее, чем больше радиус поворота отличается от минимального.
Значит, при входе в поворот с одинаковыми скоростью и радиусом поворота, большим минимального для обоих танков, потери мощности на буксование фрикционов у танка Т-80 будут существенно выше, чем у танка Т-90, и это отрицательно сказывается на показателе их надежности.
Таким образом, при движении танков по узкой извилистой трассе танк Т-80 в сравнении с Т-90 теряет в скорости прохождения поворотов и проигрывает в топливной экономичности больше, чем на прямолинейном участке пути.
Теперь читателю нетрудно догадаться, почему по средней скорости движения по узкой извилистой лесной дороге в Дальневосточном регионе СССР танки Т-80У проиграли 11% (!) танкам Т-72А (см. главу 1).
В качестве конструктивного мероприятия, снижающего неблагоприятное влияние сложной извилистой трассы на топливную экономичность газотурбинного танка, специалисты немецкой фирмы MTU предлагали иметь у газотурбинного танка … одинаковое количество передач с дизельным танком [37].
Другим способом, уменьшающим негативное влияние поворотов танка Т-80 на топливную экономичность, является применение гидрообъемной передачи механизма поворота (ГОП МП) соответствующей мощности, исключающей буксование фрикционов в БКП при повороте танка. К сожалению, КПД трансмиссии с ГОП МП значительно ниже, чем механической трансмиссии, а ГОП является трудоемким и дорогостоящим агрегатом, требующим выделения в танке дополнительных объемов для размещения ГОП, масла, коммуникаций и радиаторов для отвода тепла.
Тем не менее это направление, реализованное в конструкции танка Т-80, могло бы уменьшить на 5—7% расход топлива [2, 38].
Таким образом, наряду с тем, что, по утверждению создателей танка Т-80, применение ГТД в танке «…упрощает и, конечно, удешевляет дорогостоящий узел танка (трансмиссию. — Прим. авторов)», оно также привносит недостатки, с которыми приходится мириться или их устранять, теряя заявленное преимущество, а то и приобретая его противоположность при применении ГОП МП.
Использование ГОП МП в танке требует обязательного учета многих факторов, в том числе: удельной мощности танка, применяемого скоростного диапазона, наиболее характерных дорожных условий при эксплуатации танка, установочной мощности ГОП МП, квалификации водителя и др.
Применение ГОП МП наиболее эффективно сказывается при движении танка по дорогам с твердым покрытием. Большое влияние на выбор ГОП МП для установки в танк оказывают характеристики дорожного грунта и удельной мощности танка.
По экспериментальным данным [39], при удельной мощности до 27 л.с./т средняя скорость движения танка со ступенчатым МП при движении по деформируемому грунту (а где еще двигаться танку?) находится на одинаковом уровне со средней скоростью танка, оснащенного ГОП МП.
В связи с этим, по нашему мнению, нецелесообразно использование ГОП МП в танках, эксплуатирующихся в войсках с сегодняшним уровнем средних скоростей (см. главу 1 «Скорость танка»).
Конечно, установка ГОП МП положительно сказывается на удобстве управления и точности следования задаваемой траектории движения. Но при этом заказчик должен определиться, сколько он готов дополнительно заплатить за комфорт при управлении танка, не получая при этом адекватного улучшения характеристик подвижности танка.
Что такое приемистость двигателя?
Сочетание приемистости автомобиля с экономичностью.
Приёмистость двигателя, способность двигателя внутреннего сгорания быстро и плавно переходить с режима устойчивой работы при минимальной тяге (мощности) на режим максимальной тяги. Приёмистость двигателя в значительной мере определяет манёвренность транспортного средств и, следовательно, безопасность их движения. Например, высота перед уходом на второй круг при неудавшейся посадке самолёта будет тем меньше, чем лучше Приёмистость двигателя. От Приёмистость двигателя автомобиля зависят средние скорости движения в городах и пропускная способность перекрёстков и площадей. У поршневых двигателей внутреннего сгорания Приёмистость двигателя составляет 10 сек и менее. В наше время при росте цен на топливо все равно находятся энтузиасты, которые стремятся создать форсированные двигатели. Для увеличения мощности необходимо дополнительное топливо, и чем быстрее ездит автомобиль, тем больше топлива ему требуется. Вместе с тем мощность и экономичность не всегда являются взаимоисключающими понятиями. При правильно подобранных деталях и тщательной регулировке можно улучшить и характеристики, и топливную эффективность двигателя. Автомобильные конструкции полны различных компромиссов. Автомобильные инженеры должны учитывать большие допуски в процессе изготовления узлов, технологические возможности, нужное октановое число топлива, образование нагара, износ, отсутствие необходимого и регулярного обслуживания, и, в тоже время, добиваться по возможности невысокой цены узла. Стандартные легковые и небольшие грузовые автомобили сконструированы как баланс между ежедневными поездками на небольшие расстояния внутри города и движением с высокой скоростью по шоссе. Двигатели и трансмиссии оптимизируются в основном для работы в области низких и средних оборотов, а не в области высоких оборотов. Двигатели можно представить себе как воздушные насосы, которые смешивают топливо и воздух и выдают мощность в результате процесса сгорания. Если можно сделать что-то, что увеличивает поток воздуха через двигатель (предполагается, что топливная система способна поставлять достаточно топлива в нужных пропорциях), то мощность двигателя увеличивается. Другими путями увеличения мощности и/или экономичности двигателя является уменьшение веса, трения и нагрузки. Каждый двигатель конструируется для работы с наибольшей активностью в определенной области оборотов. Длина и диаметр входных и выходных каналов, впускных и выпускных коллекторов помогают определить диапазон мощности двигателя. Длинные и с небольшими диаметрами выпускные и впускные коллекторы улучшают крутящий момент на нужных оборотах и уменьшают мощность на высоких оборотах. И наоборот, короткие каналы с большими сечениями улучшают мощность на высоких оборотах. Тип и пропускная способность впускной и выпускной систем, конструкция распределительного вала, клапанные пружины и толкатели клапанов, система зажигания, головки блоков цилиндров, диаметры клапанов, соотношение диаметр цилиндра/ход поршня подбираются на заводе для обеспечения хорошей комбинации экономичности, мощности, приемистости и низкой концентрации выхлопных газов. Кроме этого, характеристики трансмиссии, передаточное число главной передачи и диаметр шин тоже должны согласовываться с движением и его характеристиками. Для движения в городском режиме более подходит высокий крутящий момент в области низких и средних оборотов (более экономичен) чем теоретическая максимальная мощность при высоких оборотах. Двигатели для городской езды, которые выдают высокие крутящий момент в широкой области оборотов, обеспечивают более равномерную мощность при разгоне автомобиля с переключением передач, чем двигатели, которые выдают высокую максимальную мощность в узком диапазоне оборотов. Тяжелые автомобили с относительно небольшими двигателями должны иметь более высокие передаточные числа трансмиссии, чем легкие автомобили с относительно большими двигателями. Также двигатель в тяжелом автомобиле должен быть оптимизирован для получения максимального крутящего момента в области низких и средних оборотов, так как он обеспечивает больший крутящий момент для движения и разгона автомобиля. Новые легковые автомобили и грузовики имеют низкие передаточные числа главной передачи, гидротрансформаторы с блокировкой и большее число передач в КПП для обеспечения большого пробега и приемистости двигателя. Одним из лучших путей для одновременного улучшения характеристик и экономичности на старых автомобилях является установка КПП с большим числом передних передач и дифференциала с отличным от стандартного передаточным числом. Максимальная мощность достигается при раскручивании двигателя до оборотов, превышающих наиболее эффективные. Максимальный крутящий момент всегда достигается при меньших оборотах, чем для максимальной мощности. Мощность повышается, когда прирост полученный от увеличения оборотов, сбалансирован с потерями, вызванными работой с оборотами превышающими оптимальные, на которые настраиваются детали двигателя.
Дата добавления: 2016-12-08 ; просмотров: 1056 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Что такое приемистость двигателя?
ПРИЕМИСТОСТЬ ДВИГАТЕЛЯ В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ
При работе турбореактивного двигателя на каком-либо установившемся режиме (при постоянном числе оборотов) всегда соблюдается условие:
т. е. мощность, развиваемая турбиной, равна мощности, потребляемой компрессором и агрегатами (насосами, генераторами, регуляторами и т. д.).
При работе двигателя на переходных, неустановившихся режимах, например при разгоне (увеличении числа оборотов двигателя), на ускорение вращающихся частей двигателя необходимо затратить дополнительную мощность. Следовательно, при разгоне ТРД мощность, развиваемая турбиной, должна быть больше мощности, потребляемой компрессором:
Здесь N ИЗБ — избыточная мощность турбины, расходуемая на ускорение вращающихся деталей двигателя.
Чем больше избыточная мощность турбины, тем быстрое двигатель увеличивает число оборотов.
При работе двигателя на установившихся (равновесных) оборотах каждому значению числа оборотов соответствуют определенное количество газа, протекающее через турбину, определенное его давление и температура Т 3 и, следовательно, определенная подача топлива в камеры сгорания.
Избыточная мощность турбины, необходимая для разгона двигателя, появится тогда, когда температура газа перед турбиной не превысит температуру, необходимую для данного числа оборотов.
Мощность, потребляемая компрессором, с ростом числа оборотов растет сначала медленно, а затем очень быстро. На рис. 43 сплошной линией нанесена мощность, потребляемая компрессором. Мощность, развиваемую турбиной, при постоянной температуре газов, подходящих к ней, показывают кривые А — А, Б — Б, В — В, нанесенные пунктирными линиями.
Самая верхняя кривая А — А изображает мощность, развиваемую турбиной, при наибольшей допустимой температуре Тзмакс. Другие кривые Б — Б и В — В изображают мощность турбины при более низких температурах Тз.
На рисунке видно, что мощность, развиваемая турбиной, тем больше, чем больше температура газов Т 3 , подходящих к ней. Точки пересечения кривых, изображающих мощность турбины, с кривой мощности, потребляемой компрессором, есть равновесные режимы.
Точки А — А определяют максимальные и минимальные числа оборотов двигателя.
На максимальных числах оборотов турбина работает при наибольшей допустимой температуре Тзмакс, поэтому-то и ограничивается время непрерывной работы двигателя на максимальных оборотах.
Обороты холостого хода берутся на 1000—1200 больше минимальных, чтобы не перегреть лопатки турбины (при этом Т 3 будет меньше Тзмакс) и обеспечить удовлетворительную смазку подшипников.
В промежутке между числами оборотов холостого хода и максимальными числами оборотов мощность турбины превышает мощность, потребляемую компрессором, т. е, иначе говоря, турбина в этом промежутке чисел оборотов имеет избыточную мощность.
Из анализа кривых, представленных на рис. 43, ясно, что для перевода двигателя с малых оборотов на большие надо увеличить мощность турбины — увеличить температуру газон перед турбиной.
Это достигается увеличением подачи топлива.
При увеличении подачи топлива увеличивается температура газов перед турбиной, при этом мощность и число оборотов, развиваемые турбиной, возрастут. А так как турбина связана с компрессором, то будет увеличиваться мощность, которую потребляет компрессор, это приведет к боль шей подаче (и под большим давлением) воздуха в камеры сгорания. В результате мощность турбины еще увеличивается.
Рис. 43. Совместная работа турбины и компрессора
Однако, надо сказать, что избыточная мощность турбины невелика и это является одной из причин плохой приемистости турбореактивных двигателей.
Под приемистостью понимают способность двигателя быстро изменять число оборотов (режим работы). Для турбореактивных двигателей приемистость составляет 15—18 секунд; это значит, что двигатель переходит с малого числа оборотов на максимальные за 15—18 секунд (при перемещении рычага управления двигателем за 2—3 сек.).
Плохая приемистость ТРД затрудняет управление двигателем (сектор газа надо двигать плавно, без рывков), ухудшает маневренность самолета, затрудняет полет в строю и уменьшает безопасность посадки. Для улучшения приемистости вес современные ТРД снабжены автоматами приемистости.
ПРИВЕДЕНИЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ ПО ЧИСЛУ ОБОРОТОВ К СТАНДАРТНЫМ АТМОСФЕРНЫМ УСЛОВИЯМ
Характеристика двигателя по числу оборотов снимается при испытании двигателя на стенде.
Давление и температура воздуха при испытании двигателя будут различны в зависимости от времени года и места испытания. Поэтому полученные при испытании двигателя тяга и удельный расход топлива могут быть выше или ниже величин, указанных в техническом описании данного типа двигателя. Для суждения о соответствии замеренных величин величинам, приведенным в техническом описании, их нужно пересчитать на стандартные атмосферные условия (говорят — привести к стандартным атмосферным условиям).
Стандартными атмосферными условиями считаются:
1. Барометрическое давление воздуха 760 мм рт. ст. (1,033 кг/см 2 ).
2. Температура — 15° С (288° абс.).
Приведение к стандартным атмосферным условиям производится по следующим уравнениям:
б) числа оборотов:
в) удельного расхода топлива
г) температуры газов в удлинительной трубе
В этих формулах Р ЗАМЕР , n ЗАМЕР , С ЗАМЕР , T ЗАМЕР — величины, замеренные при испытании двигателя; Р — давление воздуха в мм рт. ст. во время испытания двигателя;Т , = 273 + t — температура воздуха во время испытания двигателя.
Недостаточная приемистость двигателя, увеличенный расход и неустойчивые обороты
Главной проблемой, как только я получил машину, была недостаточная приемистость двигателя: машина тупила на всех оборотах и во всех режимах (хотя, … с горочки еще нормально ехала 🙂 )… когда даешь газ, она начинала дергаться, трястись, короче всячески сопротивляться. К тому же был огромнейший расход (
20 литров на 100 км)… только и успевал заправлять. И холостые обороты плавали… иногда машина глохла перед светофором, когда бросаешь газ.
На все эти проблемы могут влиять (как я на своем опыте выявил):
— система зажигания (свечи, высоковольтные провода, катушка зажигания);
— топливная система (бензонасос, 2 фильтра, регулятор давления, форсунки);
— выпускная система (катализатор);
— впускная система (воздушный фильтр, дроссельный узел);
— система управления (ЭБУ, датчики).
Проверив исправность этих систем, вы ТОЧНО найдете решение проблемы. Расскажу о том, как я шаг за шагом, шел к своей цели… много раз хотел все бросить, не всегда все делал правильно, ошибался, но продолжал…
Для начала поменял топливный фильтр тонкой очистки (
И заменил свечи на NGK BCPR6ES-11 (Япония) (
500 рублей). Купил в Вираже — официальный дилер (ул.Северо-Енисейская, 40). Лучшие свечи из всех использованных мной (Finwhale, Bosch, Denso).
Обороты стали более устойчивые, дергаться стала меньше.
Решил проверить катализатор на наличие спаек — снял, все хорошо. Выпускная система проверена.
Горел чек… поехал на диагностику в Бугач-Авто (официальный дилер, ул.Калинина, 84А) (540 рублей)… отличный сервис в целом… очень нравиться, до сих пор езжу только к ним. Запчасти беру там же. Рассказал все как есть… и про расход и "дергатню". Одели шланг с кислородным датчиком на выхлопную трубу, завели машину, подключили к компьютеру. Узнал что у меня Bosch M1.5.4 Евро 2. Как и ожидалось, CO и CH были превышены в несколько раз… проще говоря, соотношение бензин-кислород было нарушено… бензина было больше и он не догорал. Причиной был датчик массового расхода воздуха, но денег его менять не было (
2500 рублей, самый дорогой датчик). В добавок, оказалось, что у меня была какая-то "тюнингованная" прошивка. И мы поставили другую прошивку, без датчика кислорода и датчика детонации (теперь об этом жалею, но об этом позже) (1500 рублей). Чек пропал… машинка стала динамичнее и немного сократился расход.
Появились деньги:
— Заменил воздушный фильтр (
200 рублей). Вообще желательно менять его почаще, т.к. от него напрямую зависит срок службы ДМРВ (регламентируется — 30.000 км.);
— Заменил гофру (старая порвалась) (30 рублей);
— Поставил заглушки проема рулевых тяг и грязезащитные щитки, чтоб меньше грязи было в подкапотке и соответственно в воздушном фильтре и ДМРВ (
— Прочистил дроссельный узел и ресивер жидкостью для очистки карбюратора.
Впускная система проверена. Перестали плавать обороты и глохнуть перед светофором.
Далее:
— Заменил топливный фильтр грубой очистки (
— Заменил свечи (т.к. эти прошли 10.000 км… с нашим то бензином, тем более их заливало постоянно).
Все было готово к замене ДМРВ и проверке топливной системы и системы зажигания — поехал в Бугач-Авто (540 рублей):
— Заменили ДМРВ (2500 рублей) и отрегулировали СО, т.к. у меня отключен датчик кислорода. О чем я и говорил, теперь постоянно придется регулировать его вручную… в дальнейшем верну евро2 — исправлено;
— Проверили давление в топливной рампе — 300 кПа — норма, отсоединили регулятор давления — давление подскочило до 330 кПа — норма, поддали газу — давление не просадилось;
— Проверили высоковольтные провода и модуль зажигания с помощью свечи приложенной к корпусу, но делали все не пуская двигатель, а с помощью прибора… иначе можно спалить модуль зажигания — норма. Система зажигания проверена. — в действительности это не так — подробности.
Вердикт — "Если продолжит дергаться, смотри форсунки и остальные датчики".
Расход снизился до нормы, но "дерготня" в нагрузку не пропала.
Снял форсунки. Почистил внешне. А чтоб почистить внутри, нужно подать на форсунку 12 В, она откроется и в этот момент брызнуть очистителем карбюратора. Затем начал их проверять:
— Замерил сопротивление на обмотках — 12 Ом — норма;
— Собрал всю систему и не вставляя форсунки на место включил зажигание — ни одна форсунка под давлением не протекает;
— Крутанул ключ — форсунки распыляют бензин 4 струями образуя правильный конус;
— И подставив мерные стаканы, проверил, чтоб были одинаковые порции бензина во всех четырех стаканах.
Все проверки прошли. Топливная система проверена.
Тупить машина стала намного меньше, но все же…
Осталось проверить датчики (больше нечего). Немного теории: надпись "Проверьте двигатель" загорается только тогда, когда какой либо датчик умрет совсем или оборвется цепь, но если он плохо работает (все же работает) чек никогда не загорится.
Как то раз я заправился на непроверенной заправке и у меня загорелся чек… долго горел (позже пропал). С одной стороны я обрадовался, наконец-то узнаю какой датчик умирает. Но снова ехать из-за этого на диагностику не хотелось (итак немало денег вбухал на это). Было решено купить КKL-line адаптер (700 рублей), чтоб самому проводить диагностику и возможно выявить проблему с дерготней. И переходник к нему (200 рублей).
Но к сожалению так и не смог подключиться к машине:
— Поставил драйвера — не видит машину;
— Проверил переходник — добавил L-линию, так как таковая имелась в машине — не видит;
— Перепробовал много программ — не видит;
— Пробовал переделывать частоту на 10400 Гц (так как COM порт работает на такой частоте, а в Виндовс 7 нет такого частоты), но не успел — нечаянно нажал кнопку выключения компа и спалил кабель… сгорел компаратор LM339. Долго искал его в городе (9 рублей). Отдал запаять папе т.к. с паяльником не очень управляюсь. До сих пор паяет (забухал малость 🙂 )
Было решено заменить все датчики (стоят недорого) по очереди (один в неделю), чтоб выявить виновного:
— Датчик положения коленчатого вала — не стал менять, т.к. если был бы неисправен, то машина бы просто не завелась. Прочистил от грязи, проверил зазор — все нормально;
— Датчик положения дроссельной заслонки — заменил (250 рублей)… дерготня практически исчезла;
— Датчик фаз — сегодня заменил (350 рублей)… еще не ездил;
— Остались: датчик скорости, датчик температуры… и все 🙂
Но результатом уже доволен:
— Машинка рвет с места, … не думал что 21120 двигатель такой резвый.
— Расход — 8-9 литров на 100 км. по пробкам в городе.
— Обороты устойчивые… ниже 800 стрелка никогда не падает 🙂
Остался вопрос открытым по поводу адаптера… делитесь советами, опытом 🙂
Всем спасибо за внимание 🙂 Удачи 🙂
Приёмистость автомобиля
Под приёмистостью автомобиля понимают его способность быстро увеличивать скорость движения. Время равномерного движения автомобиля обычно невелико по сравнению с общим временем его работы. Так, например, при эксплуатации в городах автомобили движутся равномерно всего лишь 15-25% времени. От 30 до 45% времени приходится на ускоренное движение и 30-40% на движение накатом и торможением. Оценочными параметрами динамичности автомобиля при разгоне являются: максимально возможное ускорение; время разгона; путь разгона.
Максимально возможное ускорение
Ускорение автомобиля j определяется по формуле:
,
где δ – коэффициент учёта вращающихся масс.
При неизвестных конструктивных параметрах двигателя и трансмиссии коэффициент δ определяется по формуле:
g– ускорение свободного падения
ψ– суммарный коэффициент сопротивления дороги
Результаты расчётов сводятся в таблицу 8: Табл. 8
Внешний вид графика ускорений автомобиля представлен на рис. 9:
Время и путь разгона автомобиля
Для определения пути и времени разгона кривую ускорений на каждой передаче разбивают на интервалы и считают, что в каждом интервале скоростей автомобиль разгоняется с постоянным ускорением ,
где и — ускорение соответственно в начале и конце интервала скоростей, м/с 2 .
Для повышения точности расчёта, интервал скоростей берут равным 0,5-1 м/с на первой передаче, 2-3 м/с на промежуточных и 3-5 м/с на высшей. При изменении скорости от V1 до V2 среднее ускорение . Следовательно, время разгона в том же интервале скоростей
Общее время разгона от минимальной устойчивой скорости Vmin до конечной
По значениям t, определённым для различных скоростей, строят кривую времени разгона как на какой-либо одной передаче, так и при движении с переходом от любой низшей передачи к любой высшей. В последнем случае необходимо учитывать, при каких скоростях происходит переключение с более низкой передачи на более высокую. В реальных условиях момент перехода определяется водителем и может быть различным. Время разгона будет минимальным, если переключение передач происходит при скоростях, соответствующих пересечению кривых J=f(V). Если при наличии ограничителя (регулятора) в пределах ограничиваемых им частот вращения, такое переключение невозможно, то переключение должно происходить при скоростях, соответствующих номинальным частотам вращения. При отсутствии регулятора, расчёт времени разгона проводят до скорости V=0,95Vmax, а при наличии – до скорости, соответствующей началу работы регулятора. В момент переключения передач происходит разрыв потока мощности от двигателя к ведущим колёсам, в результате чего в течение некоторого времени происходит замедление скорости движения за счёт действия на автомобиль сил сопротивления. Время tП переключения передач зависит от конструктивных особенностей автомобиля и от квалификации водителя. Обычно tП = 0,5 сек.
Величину ∆VП уменьшения скорости автомобиля во время переключения передач можно определить по формуле:
При расчёте пути разгона считают, что в каждом интервале скоростей автомобиль движется равномерно со средней скоростью Vср = 0,5·(V1 + V2). Приращение пути в каждом интервале скоростей .
Складывая полученные значения получают суммарный путь разгонаSP, начиная с той же скорости, с которой рассчитывали время разгона. Путь SП пройденный автомобилем за время переключения передач, определяют по формуле:
,
где VП – средняя скорость автомобиля за время переключения передач, м/с;
VН – начальная скорость при переключении передач, м/с.
Обычно расчёт времени и пути разгона легкового автомобиля производят до скорости 100км/ч. По результатам расчётов строятся графики зависимости времени и пути разгона от скорости автомобиля t=f(V), и S=f(V) по точкам, соответствующим концам интервалов скоростей. Расчёты по определению значений представлены в таблице 9: