Мощность двигателя это - Automotoworld.ru

Мощность двигателя это

Мощность двигателя — как работает и что это такое,на что влияет

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Эффективная мощность двигателя будет всегда ниже индикаторной.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

  • Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
  • Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
  • Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
  • Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
  • При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.

Вопрос — ответ

1. Автомобиль в глубокой колее сел на брюхо: ведущие колеса вертятся, не касаясь земли. Водитель упрямо газует. Какую полезную мощность может при этом выдать двигатель?

Б — в зависимости от оборотов;

Г — в зависимости от включенной передачи.

Правильный ответ: В. Автомобиль не движется, мотор не совершает полезной работы. Значит, и полезная мощность равна нулю.

2. Заднеприводный автомобиль с блокированным дифференциалом движется по плохой дороге. Как распределена мощность между ведущими колесами?

Б — обратно пропорционально частоте вращения каждого из колес;

В — в зависимости от сил сцепления с покрытием;

Г — прямо пропорционально частоте вращения каждого из колес.

Правильный ответ: В. При блокированном дифференциале ведущие колеса вращаются с одинаковой скоростью, но моменты на них не выравниваются — они зависят только от сцепления с дорогой. Следовательно, реализуемые колесами мощности тоже определяются силами сцепления с покрытием.

3. На что влияет мощность мотора?

А — на динамику разгона;

Б — на максимальную скорость;

В — на эластичность;

Г — на все перечисленные параметры.

Правильный ответ: Г. Часто полагают, что машину тащит исключительно крутящий момент. Но поставщиком крутящего момента является мотор. Если тот перестанет снабжать колеса энергией, то все динамические параметры будут равны нулю. Например, резко тронуться на повышенной передаче не удастся: при низких оборотах просто не хватит мощности. А она-то и определяет запас энергии, которую способен выдать двигатель. И влияет на все перечисленные параметры.

Что надо знать про мощность и крутящий момент в автомобиле

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

ДВС в машине

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Читайте также  Диагностика и ремонт топливной системы дизельных двигателей

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

как повысить мощность двигателя

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Виды мощности — определение и характеристики

Одной из самых важных физических величин является мощность. Она связана с работой. В качестве примера можно привести человека, который поднимается по ступенькам. Лестницу можно преодолеть шагами или бегом. В этих ситуациях будет проделана одинаковая работа, но в том случае, когда человек бежит, работа выполняется быстрее.

В результате мощность может выражаться скоростью или интенсивностью выполнения работы. При увеличении мощности уменьшается время, необходимое для совершения работы. Таким образом, краткая формулировка мощности звучит, как скорость выполнения работы.

Мощность — является скалярной физической величиной, которая характеризует мгновенную скорость передачи количества энергии от одной физической системы к другой в процессе ее использования, и в общем случае определяется, как соотношение переданной энергии к времени передачи.

В системе СИ единицей измерения мощности является ватт, который соответствует энергии в 1 джоуль, переданной в течение 1 секунды ( 1 В т ≡ 1 Д ж / с ) . Какое-либо числовое значение мощности, указываемое в информационных источниках, в распространенных случаях подразумевает именно такой секундный временной интервал.

Согласно действующим международным стандартам серии I S O / I E C 80000 , величину мощности обозначают символом P прописной буквой при записи формул механики и электродинамики. Этимология обозначения — либо от лат. potestas, либо от англ. power.

В русскоязычных литературных источниках и записях законов по физике можно встретить обозначение мощности буквой N. Отсутствуют точные данные об этимологии данного обозначения.

Виды мощности, определение и характеристики

По Международной системе единиц (СИ) мощность можно измерить в ватт (Вт). Ватт равен одному джоулю в секунду (Дж/с). В теоретической физике и астрофизике мощность в распространенных случаях обозначают через эрг в секунду (эрг/с). Данная единица измерения является внесистемной. Мощность автомобилей, двигателей локомотивов и судов измеряют в лошадиных силах, что не рекомендовано Международной организации законодательной метрологии (МОЗМ).

Механическая мощность

В том случае, когда тело движется под воздействием силы, данная сила совершает работу.

Мощность вычисляют, как скалярное произведение вектора силы на вектор скорости движущегося тела:

N = F · v = F · v · cos α ,

где F — определяет вектор силы;

v — является вектором скорости;

α — составляет угол между вектором скорости и силы;

F — модуль вектора силы;

v — модуль вектора скорости.

В том случае, когда тело совершает вращательное движение, применима следующая формула для определения мощности:

N = M · ω = 2 π · M · n 60 ,

где M — определяет момент силы;

ω — является обозначением угловой скорости;

n — частота вращения (число оборотов в минуту, об/мин).

Электрическая мощность

Электрическая мощность является физической величиной, характеристикой скорости, с которой передается или преобразуется электроэнергия.

Мгновенная электрическая мощность P ( t ) участка электрической цепи определяется таким образом:

P ( t ) = I ( t ) · U ( t )

где I ( t ) — является мгновенным током через участок цепи;

U ( t ) — определяет мгновенное напряжение на заданном участке.

В процессе исследования сетей переменного тока оперируют не только общефизическим понятием мгновенной мощности, но и используют следующие определения:

  • активная мощность, соответствует средней величине мгновенной мощности в течение периода времени;
  • реактивная мощность, соответствующая энергии, которая циркулирует без диссипации от источника к потребителю и в обратном направлении;
  • полная мощность, определяемая через произведение существующих значений электрического тока и напряжения без учета сдвига фаз.

Мгновенную активную мощность определяют таким образом:

p ( t ) = 1 2 · U m · I m · cos φ — 1 2 · U m · I m · cos φ cos ( 2 ω t ) .

Уравнение мгновенной реактивной мощности при φ > 0 :

q ( t ) = 1 2 · U m · I m · sin φ · cos Bigl ( 2 ω t + π 2 Bigr ) ,

q ( t ) = 1 2 · U m · I m · sin φ · cos Bigl ( 2 ω t — π 2 Bigr ) .

Мгновенная полная мощность:

s ( t ) = 1 2 · U m · I m · cos φ — 1 2 · U m · I m · c o s Bigl ( 2 ω t — φ Bigr ) ,

где I m — определяет амплитуду тока;

U m — является амплитудой напряжения;

φ — угол между начальным углом напряжения ψ u и начальным углом силы тока ψ i — ( φ = ψ u — ψ i ) ;

ω — угловая скорость;

Гидравлическая мощность

Гидравлическая мощность гидромашины или гидроцилиндра равна произведению перепада давления на машине (разности давлений на входе и выходе) на расход жидкости:

где Q H — расход жидкости, м 3 / с ;

P H — перепад давления, Па.

В качестве примера можно рассмотреть насосную установку НП-89Д, которой оснащают Су-24, Ту-134 и Ту-154. Производительность данной модели насоса составляет 55 л/мин (около 0 , 000917 м 3 / с ) при давлении 210 кгс/см2 (21 МПа). Таким образом, гидравлическая мощность насоса равна приблизительно 19,25 кВт.

Приборы для измерения мощности

Ваттметры (включая варметры) — являются измерительными приборами, с помощью которых определяют мощность электрического тока или электрического излучения.

В зависимости от целевого назначения и диапазона частот ваттметры классифицируют на несколько видов:

  • низкочастотные (и постоянного тока);
  • радиочастотные;
  • оптические.

Ваттметры радиодиапазона, исходя из назначения, бывают двух типов:

  • проходящей мощности, которые включают в разрыв линии передачи;
  • поглощаемой мощности, предназначенные для подключения к концу линии и играющие роль согласованной нагрузки.

Согласно методу функционального преобразования измерительной информации и ее отображения для оператора, ваттметры подразделяют на следующие группы:

  • аналоговые (показывающие и самопишущие);
  • цифровые.

Как найти мощность, формулы и примеры задач

Основная формула для расчета мощности имеет вид:

где, P — мощность, E — энергия, t — время.

Средняя величина мощности за промежуток времени Δ t :

Интеграл по времени от мгновенной мощности за промежуток времени вычисляют, как полную переданную энергию за это время:

Читайте также  Звук двигателя автомобиля

∫ t 0 t 1 P d t = E .

Мотор подъемной техники обладает мощностью 3,5 л. с. Необходимо определить массу груза, который такая машина может поднять на высоту 15 м за 2 мин. (1 л.с.=736 Вт).

Мощность двигателя составляет 3 , 5 · 736 = 2576 В т .

m = P t g h = 2576 · 2 · 60 10 · 15 = 2060 , 8

Требуется определить время, которое необходимо затратить на откачку 10 т воды из шахты с помощью насоса мощностью 1,5 кВт. Высота подъема составляет 20 м.

В связи с тем, что планируется откачать всю воду, работу можно выразить с помощью следующего уравнения:

Согласно формуле мощности:

t = A P = m g h P = 10000 · 10 · 20 1500 = 1333 , 3

После перевода времени в минуты, получим 22,3 мин.

Ответ: 22,3 минуты

С помощью насоса было поднято 7 , 2 м 3 воды за 8 мин на высоту 10 м. Требуется определить, какой мощностью обладает насос.

Масса воды в данном объеме равна:

P = A t = m g h t = ρ V g h t = 1000 · 7 , 2 · 10 · 10 8 · 60 = 1500

Трактор вспахал 300 м полей за 1,5 мин, развивая при этом мощность 25,8 кВт. Требуется определить силу сопротивления, которую преодолевает трактор в процессе работы.

Согласно определению мощности:

F = P t S = 25800 · 90 300 = 7740

Ответ: 7 , 74 к Н .

Поезд, масса которого составляет 6 · 10 5 к г , совершает равномерное движение со скоростью 36 к м / ч . Требуется рассчитать, какую мощность развивает тепловоз, преодолевая силу трения в 0,002 веса поезда.

В первую очередь следует перевести скорость в м/c:

υ = 36000 3600 = 10

Мощность можно определить таким образом:

P = υ F = υ F t r = υ k m g = 10 · 0 , 002 · 6 · 10 6 = 120000

Игрушечная машинка, поднимаясь на горку с постоянным уклоном, способна развивать максимальную скорость υ 1 = 5 к м / ч . Когда машинка спускается с этой же горки, она разгоняется до υ 2 = 10 к м / ч . Считая силу сопротивления пропорциональной скорости игрушки, нужно определить максимальную скорость, с которой машинка способна ехать в горку, если мощность двигателя возрастет в n = 2 раза. Ответ выразить в км/ч, округлив до десятых. Трение в осях отсутствует.

Зависимость силы сопротивления от скорости можно записать в виде уравнения:

Машинка совершает работу, преодолевая силы сопротивления, так как перемещается и забирается на горку. В общем виде совершаемую работу при движении в гору можно записать таким образом:

A 1 = F S + m g h = F υ 1 t + m g S sin α = k υ 1 2 t + m g υ 1 t sin α = C υ 1 2 + D υ 1

где C и D — коэффициенты, которые учитывают все параметры, за исключением скорости.

В таком случае, мощность равна:

N = A 1 t = C ‘ υ 1 2 + D ‘ υ 1

Далее можно рассмотреть ситуацию, когда машинка спускается с горки. Некоторую часть работы (по подъему) теперь выполняет сама сила тяжести, сняв эту нагрузку с двигателя, поэтому:

A 2 = F S — m g h = F υ 2 t — m g S sin α = k υ 2 2 t — m g υ 2 t sin α = C υ 2 2 — D υ 2

Мощность в таком случае составит:

N = A 2 t = C ‘ υ 2 2 — D ‘ υ 2

Сравнив записанные выражения, получим:

C ‘ υ 2 + D ‘ υ = C ‘ υ 2 2 — D ‘ υ 2

C ‘ D ‘ = 1 υ 2 — υ 1 = 1 5

Затем следует рассмотреть движение машинки в горку с удвоенной мощностью двигателя:

2 N = A 3 t = C ‘ υ 3 2 + D ‘ υ 3

Приравняв мощности, получим:

2 C ‘ υ 1 2 + 2 D ‘ υ 1 = C ‘ υ 3 2 + D ‘ υ 3

2 C ‘ υ 1 2 + 10 C ‘ υ 1 = C ‘ υ 3 2 + 5 C ‘ υ 3

2 υ 1 2 + 10 υ 1 = υ 3 2 + 5 υ 3

υ 3 2 + 5 υ 3 — 100 = 0

D = 25 + 400 = 425

υ 3 = — 5 ± 425 2 = 7 , 8

Ответ: 7 , 8 к м / ч

Машина, поднимаясь на гору с постоянным уклоном, способна развивать максимальную скорость υ 1 = 100 к м / ч . Во время движении вниз с этой же горы она разгоняется до υ 2 = 200 к м / ч . Считая силу сопротивления пропорциональной квадрату скорости автомобиля, требуется определить максимальную скорость, которую может развивать машина, перемещаясь по горизонтальному участку дороги. Ответ требуется выразить в км/ч, округлив до целых. Трение в какой-либо степени в осях отсутствует. Мощность машины можно считать постоянной величиной.

Сила сопротивления зависит от скорости:

Машина совершает работу, преодолевая силу сопротивления, так как движется и забирается в гору. Общую совершаемую работу при движении в гору можно выразить с помощью уравнения:

A 1 = F S + m g h = F υ 1 t + m g S sin α = k υ 1 3 t + m g υ 1 t sin α = C υ 1 3 + D υ 1

где C и D — коэффициенты, учитывающие все характеристики, за исключением скорости.

Мощность определяется таким образом:

N = A 1 t = C ‘ υ 1 3 + D ‘ υ 1

Далее можно рассмотреть ситуацию, когда машина спускается с горы. Определенную часть работы (по подъему) в этом случае выполняет сама сила тяжести, сняв эту нагрузку с двигателя, поэтому:

A 2 = F S — m g h = F υ 2 t — m g S sin α = k υ 2 3 t — m g υ 2 t sin α = C υ 2 3 — D υ 2

N = A 2 t = C ‘ υ 2 3 — D ‘ υ 2

Приравняв правые части уравнений для мощности, коэффициенты будут соотнесены следующим образом:

C ‘ υ 3 + D ‘ υ = C ‘ υ 2 3 — D ‘ υ 2

C ‘ D ‘ = υ 2 + υ 1 υ 2 3 — υ 1 3 = 300 7 · 10 6 = 3 7 · 10 — 4

Мощность при рассмотрении движения по ровному участку пути составит:

N = A 3 t = C ‘ υ 3 3

После приравнивая значений мощности, получим:

C ‘ υ 1 3 + D ‘ υ 1 = C ‘ υ 3 3

υ 1 3 + 7 3 · 10 4 υ 1 = υ 3 3

υ 3 = υ 1 3 + 7 3 · 10 4 υ 1 3 = 100 3 + 7 3 · 10 4 · 100 3 = 100 10 3 3 = 149

Что важнее, крутящий момент или лошадиные силы

Крутящий момент против лошадиных сил, просто о сложном

Крутящий момент и мощность являются двумя важными техническими условиями, касающимися двигателей, но о них редко кто рассуждает в правильном ключе. Обычная точка зрения обывателя направлена примерно в одно русло. «Я хочу взять легковой автомобиль, чтобы ездить по обычным дорогам, я люблю иногда погонять, поэтому мне нужна машина с большим количеством лошадиных сил. Если в ее двигателе их будет много, значит она будет быстрой», думают некоторые и это не совсем верное рассуждение.

Второй момент, человек хочет приобрести автомобиль для езды вне дорог. Проходимые настоящие внедорожники всегда оснащаются дизельными двигателями. Моторы на дизельном топливе всегда обладают выдающимся крутящим моментом. Зная эти факты, люди рассуждают, что дизель подходит только для бездорожья и не способен соревноваться с бензиновыми двигателями в скорости и динамике. И это отчасти не является акссиомой.

Поэтому мы решили немного просветить своих читателей что каждый из этих терминов означает и на что нужно обращать внимание при выборе вашего следующего автомобиля: на большой крутящий момент или на большее количество лошадиных сил.

Оба научных термина существовали задолго до появления автомобилей и транспортных средств в целом, поэтому мы будем использовать немного терминологии из физики в нашей небольшой истории.

Мощность

Прежде всего, давайте вернемся к человеку, который научил всех нас измерять мощность. Его звали Джеймс Уатт. Он был шотландским инженером, чье имя стало обозначать стандартизированное название единицы измерения мощности. Ватты используются для измерения мощности, ок, казалось бы, хватит дальше придумывать терминологию, но на этом как известно светлые умы не остановились, в обиход были приняты лошадиные силы. Зачем? Нужен был реальный эквивалент показателя силы. В те временя им стала обычная лошадь. С тех пор одна метрическая лошадиная сила стала равна 735,5 Вт.

Что такое лошадиная сила? Она описывается как способность поднимать 75 кг на один метр за одну секунду. Мощность (в лошадиных силах) обозначает, насколько быстро производится работа.

Крутящий момент

Между тем, крутящий момент относится к иному виду силы, которая стремится повернуть объект вокруг оси. С точки зрения неспециалиста, вращающий момент является мерой силы, необходимой, чтобы повернуть винт или колесо. Когда вы откручиваете крышку пластиковой бутылки, вы используете крутящий момент.

В качестве наглядного примера. Есть машина, закручивающая крышки на пластиковых контейнерах на заводе, чтобы гарантировать, что емкость не будет пропускать жидкость через крышку должна быть настроена под определенный крутящий момент. Последний пример показывает то, как сильно машина должна закрутить крышку на контейнере, чтобы убедиться, что она герметична, без ущерба для резьбы или крышки. Если необходимое усилие крутящего момента не соблюдается, то жидкость внутри контейнера может протечь или наоборот, резьба так плотно закрутится, что потребитель не сможет добраться до содержимого контейнера, если у него, как говорится в простонародье, силенок не хватит, а по- научному, его запястье приложит недостаточно крутящего момента.

Если Вы хотите еще проще понять разницу между этими двумя терминами, представьте, что крутящий момент означает, что вы делаете домашнее варенье в вашем доме, и вы должны положить его в банки. Вам потребуется крутящий момент, чтобы запечатать банки крышками, но лошадиные силы будут необходимы для того чтобы поднять контейнер с наполненными банками в свой шкаф для хранения.

Крутящий момент и мощность в двигателях внутреннего сгорания

И вот мы переходим к самой интересной части, которую вы без сомнения ждали. В двигателе внутреннего сгорания крутящий момент совмещается с мощностью, сообща производят однонаправленную работу. Оба вида работают рука об руку, трудятся для вашего автомобиля, чтобы обеспечить его максимальную производительность на дороге.

Читайте также  На горячем двигателе детонация

Формула, которая объясняет это, выглядит таким образом:Мощность (л.с.) = Момент (Нм) х обороты в минуту/5,252. Это уравнение может быть применено к каждому двигателю внутреннего сгорания и может быть проверено при любых оборотах коленчатого вала в минуту, значение 5,252 является константой.

Простым объяснением этого факта стало бы то, что двигатель производит мощность при помощи вращающегося вала (коленчатого вала), который может применить величину крутящего момента к нагрузке при заданных оборотах в минуту. Поэтому, мощность вычисляется из крутящего момента и оборотов в минуту. При 5,252 оборотах в минуту, мощность и крутящий момент будут равны. Между тем, при более низких значениях, крутящий будет выше по значению, чем лошадиные силы, в то время как при более высоких значениях, все окажется с точностью до наоборот. Это утверждение относится ко всем двигателям внутреннего сгорания, всем его видам.

Таким образом, всякий раз, когда измеряется сила двигателя, используется динамометр. Крутящий момент и скорость вращения коленчатого вала умножаются, а затем делятся на 5,252 (для наших единиц значение составляет 7.120) получается искусственное значение лошадиных сил.

Наглядный пример преимущества автомобиля с большим крутящим моментом.

141 л.с. при 6200 об/мин

176 Н∙м при 3800 об/мин

Коробка передач Автоматическая

Количество передач 7

Снаряженная масса 1500 кг

Время разгона 0 — 100 км/ч 8.7 с

Chevrolet Cruze Wagon

156 л.с. при 5300 об/мин

250 Н∙м при 1200 — 4000 об/мин

Коробка передач Механическая

Количество передач 5

Снаряженная масса 1445 кг

Время разгона 0 — 100 км/ч 11 с

Мощность или крутящий момент, что важнее?

Вопрос не совсем корректный, но мы должны ответить на него, ведь именно за ним вы и пришли на данную статью. Автомобиль с высоким уровнем мощности, как правило, быстрее, при ускорении, достигает более высокой максимальной скорости и может нести больший вес. Тем не менее, автомобиль с большим показателем крутящего момента будет иметь лучшее ускорение по передачам, более низкие оборотах двигателя при заданной нагрузке (важно, когда речь доходит до экономии топлива), и способность идти быстрее разгоняться с нуля.

Так как лошадиные силы возрастают вместе с крутящим моментом, высокомоментный двигатель может достичь более высоких значений мощности, если оно способно превысить 5,252 оборотов в минуту и настроен для достижения этой задачи.

Что такое диапазон мощности?

Этот термин обозначает диапазон оборотов крутящего момента двигателя и максимальное число его мощности. В промежутке по достижению этого коэффициента двигатель работает в оптимальном режиме и обеспечивает высокую производительность и экономию топлива.

Электродвигатели имеют достаточно обширный диапазон мощности, поскольку они могут достигать максимальной силы крутящего момента при минимальных оборотах оси, а их максимальная сила даже больше, чем единица, производимая двигателем внутреннего сгорания.

Дизельные двигатели обладают более узким диапазоном мощности. Поскольку их пик крутящего момента меньше, чем в бензиновых двигателях, а максимальная мощность достигается на меньших оборотах. Бензиновые двигатели наделены более широким диапазоном мощности. По этой самой причине они так востребованы и пользуются спросом, как у потребителей, так и у производителей. Кроме того, современные бензиновые двигатели с турбокомпрессором, непосредственным впрыском, изменяемыми фазами газораспределения, а также другими разнообразными техническими решениями обеспечивают крайне широкий диапазон мощности.

Почему автомобили с высоким крутящим моментом динамичнее более мощных машин?

Причина кроется в приводе. Он увеличивает крутящий момент, улучшая разгон на первых передачах. Таким образом, это дает преимущество транспортным средствам с низким уровнем крутящего момента. При переключении скоростей двигатель приближается к высшей отметки мощности, что приводит к постепенному снижению вращающего момента, и соответственному росту оборотов.

Именно по этой причине дизельные двигатели выигрывают старт с места у своих бензиновых конкурентов. Кроме того, разница между ними прослеживается еще и в массе, но основными показателями являются сцепление и крутящий момент.

Почему высокомощные автомобили участвуют в гонках?

Поскольку у автомобилей с высокими показателями лошадиной силы оснащены мощной системой передач, они обладают способностью достигать более высоких оборотов двигателя за более короткий промежуток времени. А так как, в моторизованных соревнованиях должны участвовать авто, обладающие достаточно высоким диапазоном мощности.

Однако, известны случаи, когда дизельные автомобили становятся более успешными в определенных видах гоночных соревнований, таких как 24 Часа Ле-Ман, в которых Audi неоднократно выигрывала большие призы с его TDI гоночных болидами. Последнюю победу команде Ауди принесла повышенная топливная эффективность, что позволило потратить меньше топлива и меньше заезжать на дозаправки.

Отвечая на риторический вопрос поставленный в начале, о выборе автомобиля, скажем следующее, во всем нужна мера. Важно осознавать, для каких целей вам понадобится автомобиль. Где и на каких скоростях вы будете его эксплуатировать. Дизельный двигатель или бензиновый мотор с более высоким крутящим моментом (наступающем при более низких оборотах двигателя) и низкой мощностью может быть гораздо динамичнее аналогичного по параметрам автомобиля на скоростях до 100- 140 км/ч.

Ну а если мотор обладает высокой мощностью, но невысоким моментом, он проиграв в разгоне, наверстает упущенное за счет более высокой максимальной скорости.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Мощность электродвигателя

Наиболее распространенным типом промышленных силовых установок являются асинхронные электродвигатели. Один из наиболее важных их параметров — мощность электродвигателя, которая в зависимости от модели может варьироваться в широких пределах. От мощности зависит тип энергосистемы, к которой двигатель можно подключить, а также тип и производительность оборудования, с которым он будет сопряжен. По этой причине, не зная мощность электродвигателя, использовать его практически невозможно.

Определение мощности электромотора по размерам сердечка статора

Если технического паспорта нет, можно произвести расчет мощности электродвигателя, исходя из размеров сердечника статора и частоты вращения. Для этого используется формула P2H = C * D1 2 / N1 * 10 -6 кВт. Здесь:
С —постоянная мощность;
D — размер внутреннего диаметра сердечника статора в см;
l — длина статора в см;
N1 — значение синхронной частоты вращения в об/мин.

Постоянная мощность зависит от частоты вращения и габаритов мотора. Она определяется по величине полюсного деления как зависимость мощности от количества полюсов и размеров полюсного деления τ, если U1 < 500В.

Число полюсов Полюсное деление, см
10 20 30 40 50 60
2 0,4 1,4 2,2 2,7 3,15 3,9
4 1,1 2,2 3,0 3,5 3,8 4,2
6 1,7 2,9 3,8 4,35 4,8

τ = πD1 / 2р см.
2р здесь — количество полюсов в моторе.

Полученный по этой формуле результат необходимо округлить до наиболее подходящего значения в таблице. Это самый простой и доступный метод, по которому может быть осуществлен расчет мощности электродвигателя.

Подбор требуемой мощности электродвигателя

Правильно подобранная мощность электродвигателя позволяет получить оптимальные технико-экономические показатели электропривода по себестоимости, размерам, экономичности и прочим параметрам. При стабильной нагрузке на электродвигатель определить его мощность можно просто выбором по каталогу, исходя из соотношения Рн ≥ Рнагр. Здесь Рн — это мощность подбираемого двигателя, а Рнагр — предполагаемая мощность нагрузки.

Потребляемая мощность электромотора

Рисунок 1. Шильдик с параметрами на корпусе электродвигателя Работая с электромоторами, нужно знать, как по шильдику определяется потребляемая мощность электродвигателя. Значение мощности Р — это не электрическая мощность мотора, а механическая мощность на валу, обозначенная в кВт.

Чтобы найти потребляемую мощность, нужно обратить внимание на КПД и cosφ двигателя, указанные на шильдике. Причем КПД может быть обозначен как просто буквами КПД, так и буквой η, что и видно на шильдике. Сначала необходимо найти активную мощность, потребляемую двигателем от сети, по формуле Ра = Р / КПД.

Т. е. в нашем случае (рис. 1) потребляемая электродвигателем из сети активная мощность равна Ра = 0,75кВт/0,75 = 1 кВт. Теперь, чтобы найти полную потребляемую мощность, нужно воспользоваться формулой S = Pa/cosφ = 1/0,78 = 1,28 кВт.

Коэффициент мощности электромотора

Коэффициент мощности электродвигателя, или cos φ — это соотношение активной и полной мощности двигателя. Определяется коэффициент мощности электродвигателя по формуле cosφ = P/S. Здесь:
Р — активная мощность в Вт;
S — полная мощность в ВА.

В большинстве случаев активная мощность имеет меньшее значение, чем полная, из-за чего коэффициент составляет меньше единицы. Только тогда, когда нагрузка будет исключительно активной, cosφ станет равен единице.

Чем ниже коэффициент мощности потребителя, тем более мощными должны быть трансформаторы, электрические станции, а также питающие линии электропередач. Кроме того, моторы с низким коэффициентом имеют меньший КПД и большие энергопотери.

Понравилась статья? Поделиться с друзьями: