Двигатель

Как устроен дизельный двигатель

Как устроен дизельный двигатель

Дизельный двигатель: устройство и схема работы

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

Как работают свечи накаливания

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.

Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.

Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.

За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Принцип работы дизельного двигателя

Начать стоит с того, что КПД дизельного двигателя гораздо выше, чем у бензинового аналога. Проще говоря, этот мотор расходует гораздо меньше топлива. Подобного результата конструкторам удалось добиться за счёт создания уникальной конструкции.

Безусловно, современные бензиновые двигатели обладают множеством разнообразных технологических инноваций. Достаточно вспомнить прямой впрыск. Несмотря на это, показатель полезного действия бензинового мотора составляет порядка 30 процентов. У дизеля этот же параметр достигает 40. Если же вспомнить турбонаддув, то цифра может дойти до 50%.

Неудивительно, что дизельные моторы постепенно завоёвывают Европу. Дорогой бензин стимулирует покупателей к покупке более экономичных машин. Производители в режиме реального времени отслеживают изменения в потребительских предпочтениях, внедряя соответственные коррективы в производственный процесс.

К сожалению, конструкция дизельного двигателя не лишена недостатков. Одним из самых существенных является большой вес. Безусловно, инженеры проделали огромный путь, постепенно уменьшая вес мотора, но у всего есть предел.

Дело в том, что в устройстве дизельного двигателя все детали должны быть подогнаны друг к другу максимально точно. Если в бензиновых аналогах допускается возможность небольшого люфта, то здесь всё по-другому. Как результат в самом начале внедрения технологии дизельные агрегаты устанавливали только на большие машины. Достаточно вспомнить те же грузовики начала прошлого века.

История создания

дизельный двигатель

Тяжело себе представить, но первый работоспособный дизельный двигатель сконструировал инженер Рудольф Дизель ещё в XIX веке. Тогда в качестве топлива использовался обычный керосин.

Читайте также  Сколько цилиндров в 16 клапанном двигателе

С развитием технологии учёные стали экспериментировать. В результате, какие только виды топлива не использовались, чтобы достичь лучших результатов. К примеру, некоторое время моторы заправлялись рапсовым маслом и даже сырой нефтью. Безусловно, подобный подход не мог дать по-настоящему серьёзных достижений.

Многолетние изыскания привели учёных к идее использования мазута и солярки. Их низкая себестоимость и неплохая воспламеняемость позволили составить серьёзную конкуренцию бензиновым аналогам.

Изначально системы впрыска топлива в устройстве дизельных двигателей были крайне несовершенны. Это не позволяло использовать агрегаты в машинах, которые работали на высоких оборотах.

Первые образцы автомобилей, оснащённых дизельными двигателями, появились в 20-х годах прошлого века. Это был грузовой и общественный транспорт. До этого моторы такого класса применялись только на стационарных станках или кораблях.

Лишь спустя 15 лет появились первые машины, которые работали за счёт дизельного двигателя. Несмотря на это ещё очень долго дизель, будучи мощным и имеющим иммунитет к детонации, не имел широкого распространения в автомобилестроении. Дело в том, что при наличии весомых преимуществ у агрегата был целый ряд недостатков, таких как повышенный шум при работе и большой вес.

Лишь в 70-х годах, когда начали расти цены на нефть, всё кардинально изменилось. Автомобилестроители и потребители устремили свои взоры к автомобилям, в своём устройстве, имеющим дизельные двигатели. Именно тогда впервые появились компактные дизели.

Дизельный двигатель

Устройство дизельного двигателя

двигатель

Устройство дизельного двигателя состоит из четырёх основных элементов:

  • цилиндров,
  • поршней,
  • топливной форсунки,
  • впускного и выпускного клапана.

Каждый элемент конструкции выполняет свою задачу и имеет свои конструкционные особенности. В процессе развития данная технология дополнилась многими деталями, которые позволили добиться гораздо большей производительности, вот основные из них:

  • турбина,
  • топливная форсунка,
  • интеркуллер.

Каждая из этих деталей позволила значительно увеличить КПД дизельного двигателя.

Принцип работы

форсунки инжектора

Дизельный двигатель работает за счёт сжатия. Благодаря этому процессу жидкость под давлением попадает в камеру сгорания. Пропускными элементами служат форсунки инжектора.

Воздух должен быть достаточно горячим, чтобы топливо воспламенилось . Перед тем как попасть внутрь жидкость проходит через ряд фильтров, которые задерживают чужеродные частички, способные навредить системе.

Чтобы понять принцип работы дизельного двигателя нужно рассмотреть весь процесс подачи и воспламенения топлива от начала и до конца. На начальном этапе воздух подаётся через впускной клапан. При этом поршень движется вниз.

Некоторые впускные системы дополнительно обустраиваются заслонками. Благодаря им в конструкции создаётся два канала, через которые воздух попадает внутрь. В результате данного процесса происходит завихрение воздушных масс.

Когда поршень достигает верхней точки, воздух сжимается в 20 раз. Предельное давление составляет порядка 40 килограмм на квадратный сантиметр. При этом температура доходит до 500 градусов.

Форсунка впрыскивает топливо внутрь камеры в строго заданном количестве. Воспламенение происходит исключительно из-за высокой температуры. Именно этот факт объясняет то, что в устройстве дизельного двигателя нет свечей. Мало того, система зажигания отсутствует как таковая.

форсунка

Отсутствие в конструкции дроссельной заслонки позволяет развить большой крутящий момент. Но число оборотов при этом находится на стабильно низкой отметке. За один цикл может осуществляться несколько впрыскиваний жидкости.

Вниз поршень толкает давление расширяющихся газов. Результатом данного процесса является то, что поворачивается коленвал. Связующим звеном в данном микропроцессе является шатун.

Дойдя до нижней точки, поршень вновь поднимается вверх, тем самым выталкивая уже отработанные газы. Они выходят наружу посредством выпускного клапана. Такой рабочий цикл повторяется раз за разом в дизельном двигателе.

Чтобы снизить процент сажи в газах, которые выходят через выхлопную систему существует специальный фильтр. Он позволяет в значительной мере уменьшить вред, наносимый экологии.

Дополнительные узлы

узлы дизельного двигателя

Как работает турбина

Турбина в устройстве дизельного двигателя позволяет в значительной мере увеличить общую производительность системы. Тем не менее автомобильные инженеры не сразу пришли к этому решению.

Толчком к созданию турбины и внедрению её в общее устройство дизельного двигателя стало то, что топливо не успевает полностью сгореть, пока поршень движется к мёртвой точке.

Принцип работы турбины на дизельном двигателе заключается в том, что данный конструкционный элемент позволяет добиться полного сгорания топлива. Как результат мощность мотора существенно возрастает.

  • Два кожуха — один крепится на турбину, второй на компрессор.
  • Подшипники представляют собой опору узла.
  • Защитную функцию выполняет стальная сетка.

Весь цикл работы турбины дизельного двигателя состоит из следующих этапов:

  1. Воздух всасывается внутрь при помощи компрессора.
  2. Подключается ротор, приходящий в движение за счёт ротора турбины.
  3. Интеркуллер охлаждает воздух.
  4. Воздух проходит несколько фильтров и попадает внутрь через впускной коллектор. В конце данного действия клапан закрывается. Открытие происходит при завершении рабочего хода.
  5. Через турбину дизельного двигателя проходят отработанные газы, тем самым оказывая давление на ротор.
  6. На данном этапе скорость вращения турбины дизельного двигателя может достигать около 1500 оборотов в секунду. Это заставляет вращаться ротор компрессора посредством вала.

Этот цикл повторяется раз за разом. Благодаря использованию турбины мощность дизельного двигателя растёт.

Увеличение плотности воздуха позволяет подавать его в значительно большем количестве внутрь двигателя. Увеличение потока способствует тому, что топливо внутри системы полностью сгорает.

турбина

Интеркуллер и форсунка

Во время сжатия увеличивается не только плотность воздуха, но и его температура. К сожалению, это сильно влияет на долговечность дизельного двигателя. Поэтому учёными было придумано такое устройство, как интеркуллер. Он эффективно снижает температуру воздушного потока.

В устройстве может быть одна или две форсунки. Их задача заключается в том, чтобы распылять и дозировать топливо. Принцип работы форсунки дизельного двигателя реализуется за счёт кулачка, который отходит от распределительного вала.

Итоги

За счёт использования новых технологий и дополнительных узлов дизельный двигатель позволяет добиться поразительного показателя полезного действия от сгорания топлива. Данный показатель достигает 40—50 процентов. Что почти в два раза больше, чем в бензиновом аналоге.

Дизельный двигатель: устройство, принцип работы, преимущества

Дизельный двигатель (дизель) представляет собой поршневой ДВС, принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Дизельный двигатель, иллюстрация к статье

Конструкция дизеля в целом мало чем отличается от бензинового двигателя, за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива – на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени 🙂 ) виды топлива, снижая уровень затрат на его обслуживание и заправку.

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Читайте также  Двигатель оки технические характеристики

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем. Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны – повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива – рядные (плунжерные) и распределительные.

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок – с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов – свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель, не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Судовые двигатели внутреннего сгорания (СДВС)

ИА Neftegaz.RU. Первые судовые двигатели внутреннего сгорания (ДВС) появились в начале 20-го века. Датское судно Зеландия, построенное в 1912 г, имело дизельную установку с 2-мя дизелями мощностью по 147,2 кВт.

В настоящее время основную часть устанавливаемых на судах главных энергетических установок составляют ДВС.

Паротурбинные установки имеют только суда с мощностью двигателей от 14700 до 22 100 кВт.

Дизельная энергетическая установка состоит из 1-го или нескольких основных двигателей, а также из обслуживающих их механизмов.

В зависимости от способа осуществления рабочего цикла ДВС разделяют на 4-тактные и 2-тактные.

Дополнительное увеличение мощности достигается с помощью наддува.

По частоте вращения ДВС разделяются на:

  • малооборотные дизели с частотой вращения 100-150 об/мин, которые непосредственно приводят в движение судовой движитель;
  • среднеоборотные — 300-600 об/мин, которые приводят в движение судовой движитель через редуктор.

В 60-х гг одновременно с появлением винтов регулируемого шага начали в качестве главного двигателя применять нереверсивные ДВС вначале на малых судах, траулерах и буксирах, а затем и на больших торговых судах. За счет этого конструкция двигателей упростилась.

Машинное отделение (дизель со вспомогательными механизмами).

Судовая энергетическая установка с ДВС изображена на рисунке.

Кроме главного двигателя предусмотрены еще 2 вспомогательных, которые приводят во вращение генераторы.

Для обслуживания главного и вспомогательных двигателей используются вспомогательные механизмы и системы, а также система трубопроводов и клапанов.

Топливная система предназначена для подачи топлива из цистерн к двигателю.

При этом для уменьшения вязкости топливо подогревается и освобождается в сепараторах и фильтрах от жидких и твердых примесей.

Система смазки служит для прокачивания смазочного масла через двигатель с целью уменьшения трения между трущимися поверхностями, а также для отвода части полученного от двигателя тепла и очистки масла.

Система охлаждения предусмотрена для отвода от двигателя тепла, которое проникает в основном через стенки цилиндра и возникает во время сжигания топлива, а также для охлаждения циркулирующего смазочного масла.

Эта система состоит из насосов для пресной и морской воды и охладителей воды и масла.

Пусковая установка, включающая в себя компрессоры, резервуары сжатого воздуха, а также трубопроводы и клапаны, служит для пуска главного и вспомогательных двигателей.

Наряду с указанными выше вспомогательными системами главного и вспомогательных двигателей в машинном отделении находятся и другие судовые механизмы общего назначения.

Принцип действия 4-тактного ДВС показан на рисунке ниже.

В 4-тактном двигателе рабочий цикл осуществляется за 2 поворота коленчатого вала, т. е. за 4 хода поршня.

Механическая работа совершается только за время 1-го такта, 3 остальных служат для подготовки.

При 1-м такте поршень движется в направлении коленчатого вала.

Под воздействием возникающего при этом разрежения воздух через открытый всасывающий клапан устремляется в цилиндр.

В дизеле без наддува давление всасываемого воздуха равно атмосферному, в дизеле с наддувом к цилиндру подводится уже предварительно сжатый воздух. Во время 2-го такта при закрытых всасывающих клапанах предварительно поступивший воздух перед поршнем подвергается сжатию, за счет чего повышаются температура и давление.

Топливоподкачивающий насос, привод которого согласован с движением соответствующего поршня, повышает давление топлива.

При достижении давления 19,62-39,24 МПа топливо через форсунку впрыскивается в цилиндр, в котором у дизелей без наддува давление сжатого воздуха составляет 2,94-3,43 МПа и температура 550-600°С, а у дизелей с наддувом соответственно 3,92-4,91 МПа и 600-700°С.

Принцип действия 4-тактного дизеля.

Топливо впрыскивается незадолго до того момента, когда поршень достигнет верхнего положения.

Впрыснутое и тщательно распыленное топливо в сжатом воздухе нагревается, испаряется и вместе с воздухом образует горячую самовоспламеняющуюся смесь. 3-й такт является рабочим.

Во время процесса сгорания топлива образуются горячие газы, которые вызывают увеличение давления над поршнем в дизелях без наддува от 4,41 до 5,4 МПа, а в дизелях с наддувом — от 5,89 до 7,85 МПа.

Под давлением силы, возникающей за счет давления газов, поршень движется вниз, газы расширяются и производят при этом механическую работу.

Во время 4-го такта открывается выпускной клапан и отработавшие газы выходят наружу.

4-тактные судовые ДВС изготовляются как многоцилиндровые двигатели. Они устроены так, что рабочие такты равномерно распределяются по отдельным цилиндрам.

Принцип действия 2-тактного дизеля.

В рабочий цикл 2-тактного дизеля входят 2 такта, или 1 оборот коленчатого вала.

1-й такт, называемый сжатием, начинается, когда поршень находится в нижнем положении.

Впускные окна в боковых стенках цилиндра открыты. Через эти окна проходит предварительно сжатый продувочный воздух, давление которого должно быть выше давления находящихся в цилиндре расширившихся газов. Одновременно продувочный воздух через открытый выпускной клапан вытесняет отработавшие газы из цилиндра и наполняет цилиндр новой дозой. Когда впускные окна закрываются поршнем, к цилиндру воздух не подводится. Так как одновременно закрывается и выпускной клапан, воздух в цилиндре сжимается. Этот процесс не показан на рисунке.

Читайте также  Греется двигатель после замены термостата

Впрыскивание топлива и воспламенение происходит точно так же, как и в 4-тактном ДВС.

Во время 2-го такта — рабочего (или расширения) — расширяющиеся газы совершают механическую работу.

В конце этого такта впускные окна открываются поршнем и процесс продувки цилиндра начинается снова.

Отработавшие газы могут выйти из цилиндра через внешний клапан, либо через управляемые поршнем выпускные окна.

Под наддувом дизельного двигателя понимают подачу к цилиндрам большего количества воздуха, чем требуется для заполнения всего цилиндра при такте всасывания.

Цель наддува заключается в том, чтобы способствовать сжиганию наибольшего количества топлива за 1 рабочий цикл.

Это означает повышение мощности двигателя без увеличения его размеров (диаметра, хода и числа цилиндров), а также частоты вращения.

Наддув можно осуществлять за счет предварительного сжатия воздуха перед цилиндром.

Во всех выпускаемых 4-тактных судовых ДВС предварительное сжатие воздуха происходит с помощью центробежного компрессора, который приводится в действие газовой турбиной, работающей на отработавших газах дизеля.

Принцип действия газотурбинного нагнетателя.
1 — турбина, работающая на отработавших газах; 2 — отработавшие газы; 3 — свежий воздух; 4 — компрессор; 5 — коленчатый вал; 6 — цилиндр; 7 — поршень.

Принцип действия компрессора показан на рисунке выше. Поступивший из компрессора воздух проходит через фильтры. После открытия впускного клапана сжатый воздух подается через воздушный коллектор к соответствующим цилиндрам.

В двухтактных дизелях предварительное сжатие воздуха происходит в центробежных компрессорах, в пространстве под поршнем, а также в поршневых компрессорах, приводимых в действие двигателем. Давление наддувочного воздуха достигает 0,14-0,25 МПа. На рисунке ниже показан в разрезе главный малооборотный дизель с наддувом.

Принцип действия малооборотного двухтактного дизеля: а — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра; b — одновременно происходит сжатие и всасывание; с — рабочий такт и предварительное сжатие; d — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра двигателя без выходного клапана.

2-тактные дизели изготовляют в виде многоцилиндровых рядных двигателей с 10-12 цилиндрами.

Диаметр цилиндров больших 2-тактных дизелей достигает 1000 мм, ход — 1500-2000 мм.

Мощность цилиндра при общей мощности двигателя более 29 440 кВт составляет от 2900 до 3700 кВт.

В связи с этим ДВС можно использовать в качестве главных двигателей и на крупных судах.

2-тактные дизели имеют очень большие размеры и массу.

Их удельная масса достигает 40-55 кг/кВт. При мощности, например 14 720 кВт, масса составляет 600-800 т.

4-тактный дизель (рядный двигатель).
1 — наддувочный агрегат; 2 — охладитель наддувочного воздуха; 3 — трубопровод отработавших газов; 4 — трубопровод наддувочного воздуха; 5 — трубопровод охлаждающей воды; 6 — масляный трубопровод; 7 — топливный трубопровод; в — распределительный вал; 9 — приводное колесо; 10 — промежуточные шестерни; 11 — приводное колесо коленчатого вала; 12 — коленчатый вал; 13 — шатун; 14 — поршень; 15 — цилиндровая гильза; 16 — камера охлаждающей воды; 17 — крышка цилиндра; 18 — выпускной клапан; 19 — впускной клапан; 20 — топливный клапан; 21 — штанга; 22 — топливный насос; 23 — маслораэбрызгивающее кольцо; 24 — масляная ванна картера; 25 — станина двигателя; 26 — блок цилиндров.

Четырехтактные дизели применяют на судах либо в составе дизель-генераторных установок, либо в качестве главного двигателя в многовальных энергетических установках (по одному дизелю на один движитель) и, соответственно, в многодвигательных установках для одного движителя. Применение среднеоборотных дизелей в качестве главного двигателя дает следующие преимущества:

— увеличение надежности (при выходе из строя одного двигателя остальные продолжают работать);

— уменьшение габаритов и собственной массы деталей (например, клапанов, поршней, кривошипных механизмов, подшипников и т. д.);

— уменьшение удельной массы, которая в зависимости от мощности составляет от 14 до 35 кг/кВт (для мощностей около 2200 кВт).

Среднеоборотные дизели используются также в дизель-электрических энергетических установках в качестве главного двигателя.

4-тактный дизель V-образной конструкции.
1 — поршень; 2 — цилиндровая гильза; 3 — коленчатый вал.

Принцип работы дизельного двигателя.

Принцип работы дизельного двигателя

Среди разъезжающих по магистрали машин нередко встречаются «дизельки», которые уже достаточно давно и крепко выложили себе дорожку на автомобильном рынке. Однако отличить работу дизельного двигателя от бензинового способны далеко не все. А ведь различия есть и они кардинальные. Каков же принцип работы дизельного двигателя? Узнаете ниже, а для начала — несколько слов о самом движке. Кстати, вот статья об общем устройстве двигателя внутреннего сгорания.

Главные особенности дизельных движков.

Как известно, дизельные моторы дороже в обслуживании и тем более в ремонте, из-за того, что их узлы и детали (ТНВД или топливный насос высокого давления, насос форсунка, турбокомпрессор, форсунка) изготовлены с максимально высокой точностью. При этом они, как правило, экономичнее бензиновых и обладают более высоким КПД (коэффициентом полезного действия) — на 10-14 процентов. Кроме того современные дизеля имеют большую мощность и отличную приёмистость. А для еще большего увеличения мощностных и тяговых характеристик дизельные моторы оснащают турбонаддувом и интеркулером.

Принцип работы дизельного двигателя и его отличие от бензинового собрата.

Принципы работы дизельных и бензиновых движков, как уже отмечалось выше, абсолютно различны.

В бензиновых двигателях внутреннего сгорания (карбюраторных, инжекторных) приготовление смеси, как правило, происходит во впускном тракте: в цилиндр подается уже готовая смесь, которая там загорается при помощи свечи зажигания в момент сжатия.

В дизельных моторах все не так, и смесеобразование происходит прямо в цилиндре. Воспламенителем при этом является воздух, который при сжатии нагревается и воспламеняет дизельное топливо. Само это топливо подается в камеру сгорания форсункой и топливным насосом высокого давления (насосом-форсунки) под высоким давлением.

Теперь познакомимся с этим процессом подробнее, по тактам. Кстати, количество последних у дизельных и бензиновых двигателей равно (четырем). Рассмотрим каждый из тактов.

Первым тактом у дизельного мотора является такт впуска.

В период прохождения первого такта поршень двигается с верхней мертвой точки (вмт) в нижнюю (нмт). На данном этапе впускной клапан открыт, в то время как выпускной, естественно, закрыт. Когда поршень двигается в нмт, создается разряжение и цилиндр мотора заполняется воздухом, который перед тем, как попасть цилиндр, очищается от механических примесей в воздушном фильтре.

такт впуска

Вторым тактом будет такт сжатия.

В этот момент времени клапаны (впускной и впускной) закрыты и поршень движется из нмт в вмт. И так как клапаны закрыты, воздуху деваться некуда, поэтому он сжимается, создавая высокое давление, и нагревается — до 800 градусов Цельсия.

такт сжатия

Третий такт — такт расширения (рабочий ход).

Во время движения поршня в вмт дизельное топливо по средством форсунки подается в цилиндр под высоким давлением (от 150 до 300 Bar) и там распыляется. В процессе распыления топлива происходит его смешение с горячим воздухом и, следовательно, его последующее воспламенение. При горении смеси температура в цилиндре стремительно повышается — до 1750 -1800 градусов Цельсия. Одновременно с этим растет и давление, которое достигает 10-12 Мпа. Образуются газы, которые толкают поршень сверху вниз. Перемещаясь вниз, поршень выполняет предписанную ему работу. В нмт давление снижается вместе с температурой.

такт расширения

Четвертый такт — завершающий, он же — такт выпуска.

Поршень движется вверх. Выпускной клапан открывается и газы стремятся покинуть камеру сгорания через каналы в ГБЦ (головке блока цилиндров) в выпускной коллектор. Далее газы попадают в глушитель, где проходят очистку (в современных дизелях установлены сажевые фильтры) и в окружающую среду. В это время в цилиндре температура уменьшается, до 450-540 градусов, и давление падает — до 10-20 Bar.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button