Двигатель

Двигатель на водородном топливе

Двигатель на водородном топливе

Плюсы и минусы водородного топлива

Водородное топливо уже давно занимает ведущие позиции среди других источников энергии. Обладающий уникальными свойствами, водород по праву называют топливом ближайшего будущего. По сравнению с дизельным и бензиновым топливом, у него больший КПД, а также экологичность. Попытаемся разобраться, почему его до сих пор не используют?

Водородный коктейль

Хотя водород обладает чудесными характеристиками, его почти не применяют на автотранспорте потому, что люди привыкли использовать бензин, хотя он и дорожает с каждым днем. Также ведущие автокомпании постоянно откладывают сроки перехода на водородное топливо, мотивируя это тем, что установки для получения водорода появятся только к 2030 году. Европейские и американские аналитики могут быть правы в этих подсчетах, но есть множество доказательств экстренного перевода на водород целого автопарка, причем буквально за 10 -12 дней!

История двигателя внутреннего сгорания на водороде

Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Необходимую электрическую энергию он получал методом электролиза воды. Позже бельгийский изобретатель Жан Жозеф Этьен Ленуар заставил самоходный экипаж двигаться с помощью энергии водорода. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом.

Водородное топливо в блокадном Ленинграде
О водороде вспомнили только в блокадном Ленинграде в конце 1941 года, благодаря военному технику Б. И. Шелищу, который предложил использовать отработанный водородный газ для заправки автотранспорта. От налетов вражеской авиации Ленинград защищался зенитными орудиями, а также заградительными аэростатами, наполненными водородом, чтобы помешать прицельной бомбардировке города.

Когда водородные аэростаты спускались на землю, их использовали в качестве альтернативного источника топлива. Всего лишь за неделю группа техников переоборудовала на водородное топливо 600 грузовиков ГАЗ. После войны об этом изобретении снова забыли, перейдя опять на бензин.

В 1970 годах, когда произошел энергетический кризис, люди опять оценили необходимость альтернативных источников энергии. Так, Украинским ИПМ был переоборудован весь свой автомобильный парк водородное топливо, отлично справившись с топливным кризисом. Об успешных экспериментах снова забыли после распада советского союза.

Современные автомобили на водороде находятся пока в стадии проектирования, а вернее выпускать серийно опытные модели пока не собираются из-за неразвитой инфраструктуры заправок автотранспорта водородным топливом. В промышленных масштабах получить водород электролизом воды недешево, поэтому автокомпании пока не спешат на него переходить, ожидая более дешевый и простой способ получения топлива.

Преимущества водородных ДВС

Главное неоспоримое преимущество автомобилей на водороде – это высокая экологичность, так как продуктом горения водорода является водяной пар. Конечно, при этом сгорают еще различные масла, но токсичных выбросов гораздо меньше, чем у бензиновых выхлопов.

Простая конструкция.

Отсутствие дорогостоящих систем топливоподачи, которые к тому же опасны и ненадежны.

Бесшумность.

КПД электродвигателя на водородном топливе намного выше, чем у ДВС.

Имеются и недостатки у автомобилей на водородном топливе:

Дорогой и сложный способ получений топлива в промышленных объемах.

Отсутствие водородной инфраструктуры заправок автотранспорта.

Не разработаны стандарты транспортировки, хранения и применения топлива на водороде.

Несовершенство технологий хранения такого топлива.

Дорогие водородные элементы.

Большой вес транспорта. Работа электродвигателя на водородном топливе требуют водородные преобразователи тока и мощные аккумуляторные батареи, которые весят не мало, а также обладают внушительными габаритами.

Существует опасность возгорания и взрыва при работе водорода с традиционным топливом.

Ознакомившись с достоинствами и недостатками водородного топлива можно понять, почему до сих пор откладывается серийный выпуск водородных автомобилей. Однако из-за ухудшающейся экологии этот альтернативный источник энергии может оказаться единственным решением проблемы.

Производители транспорта на водородном топливе

Мировые производители все же проводят испытание в этой сфере и даже выпускают автотранспорт на водородном топливе:

Toyota — модель Toyota Highlander FCHV;

Ford Motor Company проводит испытания с концептом Focus FCV;

Honda со своей моделью Honda FCX;

Hyundai выпускает Tucson FCEV;

Daimler AG отвечает за модель Mercedes-Benz A-Class;

Перспективы развития

Все же водород является единственной приемлемой экологической энергией с огромным будущим. От ученых зависит только разработать инфраструктуру, обнаружить способ добычи водорода, наладить порядок в инструкциях по эксплуатации топлива, и тогда навсегда уже забыть о выхлопных газах, нефтяных вышках и других проблемах бензиновой зависимости.

5 причин, почему электричество и водород не заменят ДВС

Франция и Великобритания планируют с 2040 года запретить продажу всех новых автомобилей, работающих на бензине или дизельном топливе, а к 2050 году автомобили с ДВС должны и вовсе исчезнуть с дорог. Правда, есть несколько «но», которые могут помешать этим планам сбыться.

1. Батареи не обеспечивают большого запаса хода

Пробег на одном заряде ограничен несколькими сотнями километров, после чего автомобиль нужно оставлять на зарядной станции на несколько часов.

При этом дизельные машины уже давно ездят больше тысячи километров на одном баке, и, чтобы продолжить поездку, нужно лишь найти ближайшую заправку и залить полный бак.

С другой стороны, энергетики работают над системой быстрой зарядки, которая позволяет заряжать автомобиль за минуты. Например, новый Hyundai Ioniq 5 с помощью подобной зарядки может получить 80% заряда батареи всего за 18 минут, при этом на полном заряде он проезжает 470–480 км по циклу WLTP.

2. Производство батарей и электричества неэкологично

Более трети электроэнергии, которая производится в мире, образуется за счет сжигания угля, — а это один из самых грязных источников энергии. С тем, что использование угля — проблема, которую нужно решать, согласен и идеолог электротранспорта Илон Маск.

Производство литий-ионных аккумуляторов, которые используются в большинстве электромобилей, тоже неэкологично. Самый яркий пример негативных последствий добычи лития — это пустыня Атакама в Чили, разрастающаяся из-за литиевых заводов. Для добычи этого редкоземельного элемента требуется гигантское количество воды, которую выкачивают из недр. Из-за этого в Атакаме осушаются оазисы и погибают животные.

3. Электромобили негде заряжать

Количество электрокаров в мире едва достигает 1%, а их владельцы уже испытывают проблемы с зарядными станциями — те часто не работают, на месте зарядок стоят обычные автомобили, а количество разъемов напоминает о досмартфоновской эре, когда каждый производитель создавал свой стандарт.

Если количество электротранспорта будет расти в геометрической прогрессии, нагрузка на электросети серьезно возрастет, так как быстрые зарядки потребуют более высоких напряжений и токов заряда. Это значит, что не все сети смогут справиться с возросшей нагрузкой.

Кроме того, есть и концептуальная проблема. На заправку полного бака автомобиля с традиционным двигателем уходит несколько минут. Для полной зарядки электромобиля сегодня требуется несколько часов, из-за чего нужно полностью менять подход к тому, чем увлечь клиентов на это время. По идее, АЗС должны превратиться в досуговые и деловые центры, но предпосылок к этому пока нет.

4. На электрокарах сложно заработать

Китай выделяет субсидии на производство электрокаров и устанавливает зарядные станции за счет бюджета, в Швейцарии электромобили избавили от ввозной пошлины, а Германия инвестирует в исследования по усовершенствованию электротранспорта. Но если отменить поддержку государства, начинаются проблемы.

В странах, где власти отменили субсидии на покупку электрокаров, продажи сразу же провалились. Электромобили пока не выдерживают конкуренции со стороны традиционного транспорта.

Модельный ряд крупных автопроизводителей пополняется, в основном, электромобилями, которые построены на базе премиальных моделей. Сейчас технологии не позволяют сделать народный электрокар, который бы продавался так же, как традиционные бестселлеры, поэтому приходится компенсировать стоимость, выпуская премиум.

Пока производство электромобилей не станет рентабельным, говорить о захвате ими рынка преждевременно.

5. Батареи, в конце концов, иногда взрываются

Литий-ионные батареи имеют такое неприятное свойство, как взрывоопасность. Из-за этого авиакомпании до сих пор отказываются перевозить аккумуляторы такого типа.

Внутри этих батарей образуются «усы» — микроскопические нити из лития, которые вызывают короткое замыкание и провоцируют взрыв батареи. Из-за короткого замыкания электролит внутри аккумуляторов начинает кипеть и раскаляться. Корпус батареи не выдерживает температуры, и его содержимое начинает выливаться наружу.

Поэтому электромобили так быстро сгорают, если попадают в аварию. Более того, металлический литий вступает в реакцию с водой и образует водород, потому тушить литиевые аккумуляторы водой — плохая идея. Конечно, ученые ищут решения проблемы. Недавно они разобрались, как образуются «усы», и теперь думают, как минимизировать их появление.

Но мир по-прежнему ждет более безопасной альтернативы литий-ионных батарей для электрокаров.

Но есть же альтернатива — водородный двигатель! Или нет?

Водородный двигатель гораздо экологичнее ДВС, так как вообще не выделяет вредных для окружающей среды газов, при этом имеет гораздо более высокий КПД. На одной заправке водородные автомобили уже сейчас могут проезжать до 500 километров, а заправка водородом длится не дольше, чем бензином.

Но есть проблема — в природе водород в чистом виде практически не встречается. Поэтому приходится обходиться электролизом: под электрическим током дистиллированная вода разлагается на водород и кислород. К сожалению, сейчас для массового производства водорода дешевле всего получать электроэнергию при помощи сжигания газа или угля.

Но компании не просто так инвестируют сегодня в эту технологию десятки миллионов долларов — они верят, что со временем водородные автомобили станут новыми электрокарами.

Мы перечислили несколько проблем двигателей, представляющих альтернативу современным ДВС. Но важно понимать, что технологии идут вперед, и с каждым годом пробег на одном заряде увеличивается, мощность повышается, а механизмы рекуперации становятся более совершенными.

Каким будет электромобиль, который сможет потеснить традиционные машины с ДВС? Первое, о чем мечтают автомобилисты, — огромный запас хода. Второе — мощность, которой хватит, чтобы прокатиться с ветерком. И третье — не космическая цена.

Автомобили на водороде против электромобилей, обзор

Мир переходит на электромобили и автомобили на водородном топливе — это тенденция. Многие страны полностью откажутся от автомобилей на двигателях внутреннего сгорания уже к 2030 году. Законы о запрете автомашин на бензине введены или рассматриваются в Индии, Великобритании, Норвегии, Бельгии и др. странах. Переход на электромобили неизбежен и идет быстрыми темпами. Но у электрокаров есть серьезный конкурент — автомобили на водороде.

Читайте также  Присадки для бензиновых двигателей

Ученые и эксперты считают что электромобили это лишь переходный этап, а в ближайшем будущем водородные авто заменят электромобили так как они имеют гораздо больше технических преимуществ и главное — более экологичные.

Как работают автомобили на водороде?

Устройство водородного авто во многом напоминает устройство электрокара: тот же электрический двигатель, только аккумулятор получает питание не от электросети, а от результата химической реакции с участием водорода. Сама реакция протекает внутри ячеек своеобразных реакторов — топливных элементов. Из себя ячейка представляет пару пористых электродов (положительного катода и отрицательного анода), разделенных мембраной из полимера, на который тонким слоем нанесен катализатор.

Если представить схематически, то со стороны анода из специального баллона в систему подается водород, а со стороны катода — уже кислород. Их встреча вызывает химическую реакцию, в процессе которой протоны свободно уходят через полимерную мембрану, а электроны — задерживаются, создавая напряжение. Так возникает электричество, которое далее по цепи идет на электродвигатель, приводящий автомобиль в движение.

Как мы видим, выхлоп при такой химической реакции «нулевой» — чистый и безвредный водяной пар, этот момент очень нравится экологам. Подобное устройство также делает водородные автомобили независимыми от привычного техобслуживания — не надо менять опостылевшее масло или свечи. В чем еще один плюс и для экологии, и для кошелька водителя.

Но сложность в том, что водород в «готовой» для автомобиля форме практически не встречается на Земле. В основном, его добывают с помощью химических реакций из таких газов, как метан или пропан. И если сама работа автомобиля на водороде безвредна для окружающего мира, то при его добыче в атмосферу все равно выделяется вредный углекислый газ. В данное время еще не найден экологически чистый способ производство водорода, хотя процесс идет.

Автомобиль на водороде

Существуют и альтернативные способы добычи водорода:

• Из бурого угля — получение недорогого водорода. Однако сырье легко воспламеняется, отчего практически не транспортабельно.
• Из побочных промышленных отходов — их сегодня ровно столько, что полученного водорода хватит для заправки 250-750 тыс. автомобилей.

Таким образом, чтобы автомобили на водороде работали во всем мире, им требуется множество водородных заправок, их сейчас крайне мало. На сегодня водородные заправочные станции распространены лишь в США, Германии, Японии. В России на настоящий день только одна заправка — и та неофициальная. Причин такой малочисленности несколько, основное это:

• Водород — взрывоопасный элемент: хранение «топлива» требует повышенных мер безопасности, а значит — больших трат на постройку, обслуживание объекта, работу квалифицированного персонала.
• Взрывоопасность «топлива» требует соблюдения осторожности и при заправке. Поэтому на большинстве заправочных станций этот процесс автоматизировали, что также требовало немалых расходов.

Электромобиль пока еще проигрывает автомашине с двигателем внутреннего сгорания, это:

• Ограниченный пробег электрокаров, небольшая дальность расстояний, которые можно проехать на одной зарядке.
• Пока еще малое количество зарядно-заправочных станций.
• Долгий процесс зарядки аккумулятора.
• Трудность эксплуатации при минусовых температурах.

Водородные автомобили имеют следующие возможности:

• Могут стабильно работать при -6° С. В экспериментальных условиях некоторые модели автомашины на водороде прекрасно работают и при -25° С.
• Наполнение баллонов автомобиля водородом занимает 3-5 минут.
• Привод на колеса неполный — ситуацию можно исправить только установкой на каждую ось по своему электромотору.

Автомобили на водороде против электромобилей

Для сравнения возьмем одну из самых ярких моделей автомашин, работающих от сжиженного водорода — кроссовер Nexo от южнокорейского производителя Hyundai:

• 600 км хода (при полностью заправленном баллоне);
• мощность 161 л/с.
• разгон до 100 км/ч всего за 9,5 сек.

Электрокары будет представлять Tesla Model Y, самый ожидаемый из кроссоверов последних лет, представленный компанией харизматичного предпринимателя и миллиардера Илона Маска.

Плюсы автомобиля на водороде

Начнем с главных достоинств Hyundai Nexo:

1. Автомобиль не только не загрязняет атмосферу вредными соединениями и газами, но даже способствует очищению воздуха. Как утверждают разработчики, созданная ими система фильтрации может вытянуть из обрабатываемого воздуха до 99,9 % вредных примесей. За час оборудование очищает несколько десятков килограмма воздуха — это «порция» более чем для 40 человек.

2. Уже проведены исследования, доказывающие, что 10 000 автомобилей, работающих на сжиженном водороде, заменяют собой в условиях крупного города порядка 600 000 взрослых деревьев.

3. Водород — один из самых распространенных элементов из периодической таблицы Менделеева. В это же время литий, необходимый для изготовления аккумуляторов электромобилей, сравнительно редок — производители уже ведут за элемент настоящие «торговые войны».

4. Ученым доступна новая методика перемещения и хранения водорода в машинах: используется модульная установка, позволяющая сохранять элемент в форме аммиака. Перед использованием на тех же кроссоверах «Хендай» оборудование преобразует аммиак обратно в водород.

5. Возможность покупки подержанного водородомобиля: в отличие от электрокара, его топливные элементы изнашиваются значительно медленнее, чем аккумуляторные батареи. Так, ресурс ячейки для протекания химических реакций — 250 тыс. км пробега.

Минусы авто на водороде

Но инновационный водородомобиль имеет также и существенные недостатки:

1. И электрокары, и машины на водородном топливе приводит в движение все тот же электромотор. В первом случае источником энергии для двигателя выступает аккумулятор, а во втором — блоки с топливными элементами. Одним словом водородомобилю опять же требуется электродвигатель.

2. Сжиженный водород пока что — не самое удобное и безопасное топливо: сравнительно быстро расходуется, требует много места и с большими сложностями хранится.

3. Производительность кроссоверов на водороде Hyundai заметно уступает электромобилям Tesla: передовые модели электрокаров разгоняются до 100 км/ч за 2,5 секунды, а не за 9,5.

4. По цене водородная машина практически вдвое дороже электромобиля: $70 000 за Toyota Mirai на сжиженном водороде против Model 3 Tesla за $35 000 (эта модель электрокара способна разогнаться до 100 км/ч за 5,6 секунд, может следовать при полном заряде 420 км).

5. Свободно пользоваться автомобилями на водородном топливе можно только в Калифорнии, где имеются необходимые заправки. Электромобили же распространены более широко — так, станции для подзарядки можно уже найти на пространствах России и Украины.

Главные водородные концепты современности

Познакомимся поближе с самыми популярными автомобилями на водороде:

• Toyota Mirai — самая распространенная модель водородомобиля. Преимущественный рынок сбыта — Соединенные Штаты, но также продается в Японии, Канаде и европейских странах. Автомашину продают за $58 000 + покупатель получает от автокомпании сертификат на $15 000 для заправки водородом, действующий 3 года. Устройство — классическое для водородомобиля. Чтобы обеспечить машине ровный ход, производитель обеспечил ее аккумуляторной батареей.

Toyota Mirai

• Honda Clarity. Машину можно приобрести в лизинг за $379 в месяц и также получить депозит на заправку в течение 3-х лет на $15 000. Для водородного «топлива» — бак на 141 л. Мощность авто — 174 л/с. На одной заправке можно проехать, по результатам разных тестов, 480-750 км.

• Hyundai Nexo. Корейский водородный кроссовер, оборудованный тремя баками — в багажнике, под капотом и в задней зоне корпуса. Мощность машины — 163 л/с, запас хода — 595 км. До 100 км/ч водородомобиль способен разогнаться за 9,5 сек. Испытания подтвердили, что машина отлично работает при похолодании до -6° С. Гарантированный срок эксплуатации модели — 160 тыс. км или 10 лет использования. В реальности же ресурс машины составляет до 240 тыс. км.

• Mercedes-Benz GLC F-Cell. Особенность этого автомобиля на водороде в том, что это некий гибрид, при необходимости его можно подзарядить и от электросети. Водитель может выбрать комфортный для себя режим следования: ускоренный заряд автомашины на ходу, использование лишь заряда батареи, работа только на водороде с сохранением заряда аккумулятора и поступление энергии одновременно и от батареи, и от топливных элементов. Обновленная модель может похвастаться мощностью 211 л/с (первоначально — 197 л/с). На 4,4 кг водородного топлива машина проедет 430 км, а при заряде от электророзетки — 50 км.

• BMW X5 i Hydrogen Next. Для основы была взята стандартная серийная платформа, электродвигатель может питаться и от батареи, и от топливных элементов. Мощность немецкой разработки — 170 л/с.

Какие перспективы у автомашин на водороде

Если полистать новости десятилетней давности, то мы увидим, что машины на водородном топливе ставили в один ряд с электрокарами. Сегодня же видно, что такой транспорт обходится слишком дорого, а в большинстве мировых государств еще нет необходимой заправочной сети.

О том, что надежды на водород не оправдались, можно судить по американскому рынку водородных автомобилей — самому крупнейшему в мире. С 2012 года в США было реализовано всего 8000 транспортных средств на водородном топливном элементе. Свободно ездить на водороде можно только в Калифорнии — штате с самой широкой сетью соответствующих заправок. И то, регион периодически страдает от дефицита водорода, из-за чего владельцы не могут пользоваться своими авто.

Уже ясно, что по вопросам экологии водородные машины снова проигрывают электромобилям. То же самое можно сказать и о самом больном вопросе — о стоимости автомобилей. Не вызывает энтузиазма у автовладельцев и небогатый выбор водородных авто. На рынке доступны считанные модели, а многие автопроизводители к 2020 году уже свернули свои водородные проекты: выпуск таких авто обходится в 3 раза дороже, чем электрокаров.

Вывод из всего сказанного: на настоящий момент позиция водорода на топливном рынке оставляет желать лучшего. Водородные проекты не видятся перспективными крупным игрокам мирового автопрома, а население задумывается о приобретении водородной машины в самую последнюю очередь.

Но есть повод надеяться, что инновация не канет в Лету: ведь водородные топливные элементы весьма выгодны при производстве тех тех же паромов или мусоровозов. Инновации еще не раз нас удивят и возможно в скором будущем будут представлены новые технологии водородного двигателя с уникальными характеристиками.

Читайте также  Коромысло в двигателе

Первый элемент просит порулить

alt=»Российская столица — лидер среди городов Европы по количеству электробусов. Фото: Виктор Маринин» /> Российская столица - лидер среди городов Европы по количеству электробусов. Фото: Виктор Маринин

Наша страна не остается в стороне от водородного тренда. В ноябре прошлого года премьер Михаил Мишустин утвердил программу развития водородной энергетики в России до 2024 года. Далее последовали высказывания высшего истеблишмента о потенциале развития водородной энергетики в стране. Подытожил ряд программных выступлений Владимир Путин, поставив правительству задачу разработать к 2023 году автобус на водороде, а позже и локомотив. Так что повернуть назад не получится.

Фото: Александр Гальперин/РИА Новости

"Японская Toyota запустила массовые продажи своего водородного автомобиля Toyota Mirai еще в 2015 году. В Германии на регулярной основе курсирует пригородный поезд на водороде производства Alstom, ожидаются поставки еще 27 подвижных составов. В мире существует множество подобных проектов, — рассказал "РГ" гендиректор компании Drive Electro, доктор технических наук, профессор Института механики и энергетики имени В.П. Горячкина Сергей Иванов, — в то же время водородный транспорт пока не вышел на массовое производство. Даже в Японии, стране, где "дорожную карту" по переходу на водородную энергетику подписали еще в 2014 году, на всю страну всего 2,5 тысячи таких машин".

Почему же не происходит скачка в развитии водородного транспорта и когда стоит ждать массового использования водородных автомобилей в России? Разбираемся в этом вместе с экспертом.

Водородный транспорт — это тоже электромобиль, только более продвинутый, объясняет Сергей Иванов. Вместо аккумуляторных батарей электродвигатель питают топливные элементы. Такая техника надежна, неприхотлива, бесшумна, работает без вредных выбросов. Использование водорода особенно актуально для ТС, которые передвигаются на большие расстояния. Без дополнительной заправки можно проехать от 500 до 1000 километров. Плюсы использования водородного двигателя очевидны и в целом общеизвестны — его КПД намного выше, чем у двигателя внутреннего сгорания, а благодаря использованию электрической трансмиссии таком транспорту присуще накопление энергии при торможении.

Тем не менее причины, по которым правительство России задумалось о возможном переходе на водородный транспорт и водородную энергетику, лежат за пределами чисто технологических вопросов, уверен Сергей Иванов. В июле 2020 года была опубликована водородная стратегия ЕС, согласно которой страны-участники планируют полностью отказаться от автомобилей на ДВС к 2040 году. Помимо этого ЕС планирует значительно снизить долю использования традиционных энергоносителей. "А Россия очень зависима от цен на энергоносители ввиду специфики структуры своей экономики, — подчеркивает профессор. — Более того, углеводороды — наш главный экспортный продукт, а Европа — основной торговый партнер и потребитель энергоресурсов. Чтобы сохранить за собой статус экспортера и избежать трансграничных налогов при поставках продукции в Евросоюз, нашей стране придется следовать стандарту чистого производства".

Однако, несмотря на радужные перспективы новых технологий, здесь есть ряд серьезных проблем. Традиционные способы получения водорода из метанола энергозатратны и связаны с выбросами углекислого газа. Производство же "зеленого" водорода путем электролиза резко увеличивает его стоимость. Ограничением массового использования водорода являются также вопросы его хранения и транспортировки. И решение этих вопросов требует огромных финансовых и временных ресурсов.

Тем не менее экономические стимулы к переходу на водород есть уже сейчас и будут расти стремительно по мере дальнейшего развития технологий. "Водород нужен не только как моторное топливо и для генерации энергии, — рассказывает Сергей Иванов. — сейчас на 95 процентов он используется в нефтехиме. При этом Россия уже занимает хорошие позиции на рынке. Согласно Энергетической стратегии России до 2035 года экспорт водорода из нашей страны должен достигнуть 2 миллионов тонн. По прогнозу минэнерго, за 30 лет рынок водорода вырастет с сегодняшних 110 до 150-160 миллионов тонн. По разным прогнозам, объем рынка водорода в денежном эквиваленте может достигнуть 200 миллиардов долларов уже к 2023 году".

Все предпосылки для развития водородной энергетики в России есть. Это отдельно отметил зампред правительства Александр Новак: "В России есть развитые газовый и атомно-энергетический комплексы, которые могут помочь в производстве водорода. Например, водород можно производить методом электролиза или путем переработки газа (запасы которого в стране огромны). Поэтому Россия обладает серьезным потенциалом не только для развития, но даже мирового лидерства в водородной энергетике".

Фото: Правительство Самарской области

Растет и рынок электрического транспорта. По прогнозам Bloomberg New Energy Finance, к 2040 году ежегодные продажи электрокаров, в том числе тех, что используют водород, достигнут 35 процентов от общего числа продаваемых машин. А Россия имеет примеры эффективного запуска транспорта на электротяге. "Уже сейчас Москва является лидером по количеству электробусов в Европе. Технологии производства водородного транспорта в целом схожи. Следовательно, внедрить водородный транспорт и наладить его массовый выпуск будет возможно. Все это будет способствовать снижению стоимости самого водорода и одновременно повысит скорость окупаемости связанных с его производством и дистрибуцией инфраструктурных проектов. Именно поэтому кажущиеся малоэффективными с точки зрения экономической целесообразности решения имеют для России огромные перспективы", — резюмирует Сергей Иванов.

Так что похоже, что скачок развития водородного транспорта происходит прямо сейчас. К нему готовы как технологии, так и правительство. А это значит, что ждать водородный транспорт в России осталось недолго. К 2023 году первые автобусы на водородном топливе уже поедут по дорогам городов. Радует и то, что, по прогнозам Bloomberg New Energy Finance, уже к 2025 году стоимость автомобилей на водороде сравняется со средней ценой обычных автомобилей.

В Европе рассматривают варианты создания самолёта с водородным двигателем

Первый вариант самолета рассчитан на перевозку 120-200 пассажиров, дальность полета более 3700 км, имеет турбовентиляторный двигатель, работающий на водороде. Для хранения жидкого водорода предусмотрены специальные резервуары, размещенные за задним герметическим шпангоутом.

Второй вариант самолета предназначен для перевозки до 100 пассажиров, дальность более 1800 км, работает на водородных газотурбинных двигателях и идеален для полетов на короткие расстояния.

Третий вариант самолета предполагает возможность перевозки до 200 пассажиров и дальность полета более 3700 км. Благодаря очень широкому фюзеляжу, в этом варианте самолета есть много места для хранения и распределения водорода и оборудования салона всем необходимым.

В декабре 2020 года корпорация Airbus представила еще один концепт самолета с водородным двигателем.

Одна из главных проблем для авиаконструкторов – для размещения достаточного количества жидкого водорода самолету потребуются баки в четыре раза больше обычных. Эти баки придется размещать не в крыльях, а внутри самого фюзеляжа.

Как отмечает Гленн Ллевеллин, вице-президент Airbus по самолетам с нулевым уровнем выбросов, первые три представленных корпорацией концепта – гибридно-электрические, то есть в каждом из них есть водородные газовые турбины, но они могут быть обеспечены и электроэнергией в гибридной конфигурации. В этом случае газовые турбины, использовались бы на крейсерском этапе, а электрическая мощность обеспечивала бы ускорение при взлете и наборе высоты.

Четвертый концепт, как рассказывают в корпорации, использует только топливные элементы без какой-либо газовой турбины. Пока, по словам Ллевеллина, корпорация изучает осуществимость технической реализации концептов и их коммерческую целесообразность.

Определиться с тем, какой концепт получит дальнейшее развитие, корпорация обещает в 2022-2023 гг. В 2025-2026 гг. в этом случае может начаться разработка и строительство первого водородного самолета, и только в 2035 году он сможет совершить свой первый полет. Таким образом, собственно технологию инженерам корпорации предстоит разрабатывать в течение ближайших четырех лет. Времени не так много, как могло бы показаться.

Важность сверхпроводимости при создании нового двигателя

Так как все 4 концепции водородного самолета предполагают использование электрической силовой установки, корпорация Airbus инициировала амбициозную программу использования сверхпроводящих материалов. Дело в том, что разработка архитектуры электродвигателя с обычной проводкой предстает довольно сложной задачей.

В свою очередь, технологии сверхпроводимости давно используются в таких отраслях как фундаментальная физика, медицинские технологии, а в течение последнего десятилетия внимание на них обратили и в аэрокосмической отрасли.

Проект Airbus, получивший название «Продвинутый сверхпроводящий и криогенный демонстратор экспериментальной силовой передачи», предполагает исследование «влияния сверхпроводящих материалов и криогенных температур на характеристики электрических силовых установок самолета». Демонстрационный образец планируется построить на заводе E-Aircraft System House в Оттобрунне, Германия, с участием дочерней компании UpNext.

В руководстве программой считают, что данная технология повысит эффективность на 5-6% по сравнению с традиционными технологиями. Также ожидается сокращение потерь электроэнергии как минимум в два раза. По словам руководителя проекта, в рамках программы Ascend будет разрабатываться подходящая изоляция диаметром 4 дюйма для использования на борту самолета.

Кто знает, может быть такие проекты действительно будут успешными и к середине следующего десятилетия самолеты на водородных двигателях не только совершат первые полеты, но и получат массовое распространение.

Как в блокадном Ленинграде техник-самородок создал первый водородный двигатель для автомобиля

Блокадный Ленинград был одной из самых сложных точек на карте боевых действий Восточного фронта. В условиях тотальной осады немецкими войсками обеспечивать оборону города было чрезвычайно сложно. Одним из самых действенных способов защищать ленинградское небо от вражеских бомбардировок были аэростаты.

Впервые аэростаты взмыли в небо над Ленинградом ночью практически с первого дня войны – поздним вечером 23 июня 1941 года. Огромные аппараты с водородом внутри курсировали над городом на средней высоте, не давая бомбардировщикам противника снижаться, чтобы начать обстрел. А если самолет все же предпринимал попытку снижения и задевал аэростат, то происходил взрыв фугасной бомбы, который уничтожал вражескую машину. Аэростаты были довольно эффективным способом защиты от бомбардировок, однако и они имели недостатки. Так, срок их непрерывного пребывания в небе обычно не превышал трех недель. Аэростаты теряли водород, который выходил наружу. И просто снижались, теряя высоту. И для того, чтобы вновь поднять «защитника» в небо, необходимо было сначала посадить его на землю и наполнить новым водородом.

Заправка осуществлялась посредством использования лебедок, работающих на бензине. Однако столь необходимое топливо закончилось уже в конце 1941 года, и Ленинграду грозила потеря защиты его неба. Аэростаты были жизненно необходимы для защиты Ленинграда

Выход нашел 32-летний военный техник в звании младшего лейтенанта Борис Шелищ. Его мобилизовали уже на вторые сутки после вторжения войск Германии на территорию СССР. Занимался младший лейтенант Шелищ ремонтом аэростатных лебедок 3-го полка 2-го корпуса противовоздушной обороны. Будучи талантливым самоучкой, еще в довоенное время он сумел собрать легковую машину, которая служила ему средством передвижения между аэростатными постами для технического руководства.

Читайте также  Герметик для двигателя приоры

И в тяжелые дни, когда в Ленинграде закончился бензин, Борис Шелищ предложил альтернативу – использовать приспособленные к работе с аэростатами лебедки от лифта, работающие от электричества. Идея была неплохая, однако на пути встала новая преграда: довольно скоро город остался и без электроэнергии. Младший лейтенант Борис Исаакович Шелищ

Попытка обратиться к механическому труду также оказалась практически невыполнимой. Дело в том, что для такой работы требовалась сила более десяти мужчин, но в условиях повсеместной мобилизации на фронт персонала на аэростатных постах осталось до 5 человек, и большинство из них были девушки.

Но Шелищ не сдавался, пытаясь найти выход из практически отчаянной ситуации. Находясь в увольнении у себя дома, инженер решил развлечь себя чтением. Выбор пал на роман «Таинственный остров» Жюля Верна. Разгадка проблемы с аэростатами была найдена в тот же момент – 11 глава произведения содержала спор главных героев, рассуждавших о том, какое топливо будут использовать в будущем. По мнению персонажа Сайреса Смита, который был инженером, после иссякания месторождений угля, мир перейдет на воду, точнее ее составляющие – кислород и водород. Роман Жюля Верна подсказал выход

Решение обратиться к водороду вместо бензина требовало взвешенных раздумий, учитывая печальные эпизоды прошлого, связанные с подобными опытами. Шелищ был хорошо знаком с историей гордости воздухоплавания Германии дирижабля «Гинденбург». Катастрофа, которая была вызвана именно возгоранием водорода, стала причиной гибели десятков человек и активно освещалась в советской прессе. Этот трагический случай инициировал свертывание опытов с опасным газом и положил конец эре дирижаблей. Печальная судьба самого известного дирижабля доказала опасность использования водорода

Однако лейтенант Шелищ считал, что нужно рискнуть, потому что иного выхода у защитников блокадного Ленинграда попросту не было. Борис Шелиш осознавал весь риск эксперимента, но другого способа поднять аэростаты в воздух в блокадном Ленинграде не видел. Он вставил шланг от спущенного на землю аэростата во всасывающую трубу двигателя «полуторки» и пустил через него отработанный водород. Двигатель мгновенно завелся, но, когда экспериментатор добавил обороты, в выхлопной трубе раздался резкий хлопок. Взрывной волной Бориса выбросило из открытой кабины, что и спасло ему жизнь. К счастью, никто не погиб, но сам Шелищ получил серьезную контузию. Придя в себя, упрямый лейтенант продолжил работу над проблемой. Первые эксперименты прошли с переменным успехом

Останавливаться на полпути талантливый лейтенант не собирался. Сразу после выздоровления он стал думать над решением возникшей проблемы. Решением стал сконструированный им гидрозатвор. Это простейшее приспособление отсекало пламя от двигателя автомобиля. Поступающий газ как бы «пробулькивался» через воду, и тем самым устранялась опасность взрыва. Чертеж изобретения был представлен руководству, и техник-лейтенант получил разрешение на новый эксперимент.

На испытания собрались вся верхушка Ленинградской службы ПВО. Борис Шелищ провел процедуру запуска в присутствии руководства. Двигатель завелся мгновенно, вопреки 30-градусному морозу, и работал без перебоев. Все последующие эксперименты также прошли успешно. Впечатленное командование предписало в 10-дневный срок перевести все аэростатные лебедки на водород. Однако ресурсов для этого у разработчиков попросту не было.

Шелищ вновь взялся найти решения. В своих поисках он оказался на Балтийском заводе и поначалу ничего не нашел. Однако затем, зайдя на склад, наткнулся на огромное количество использованных огнетушителей. И они стали идеальным решением. Тем более, что в условиях постоянных бомбардировок «запасы» пустых огнетушителей непрерывно пополнялись.

Для того, чтобы уложиться в срок, разработчики работали несколькими бригадами едва ли не круглосуточно. Счет созданных и установленных единиц нужного оборудования шел на сотни. Но ленинградцы все-таки успели. И аэростаты вновь взмыли в небо, защищая блокадный город от вражеских бомбардировок непроходимой стеной. Благодаря изобретению талантливого лейтенанта, аэростаты вновь защищали город

В декабре 1941 г. Комитет по обороне Ленинграда для поднятия боевого духа защитников города организовал выставку изобретений военных рационализаторов. Она разместилась в штабе ПВО в Басковом переулке, 16. Лейтенанту Шелищу было предписано представлять на выставке свое детище. Прямо в актовом зале была установлена «полуторка», работающая на водородном топливе. Выхлопные газы от работающего двигателя не загрязняли воздух благодаря тому, что на выходе образовывался пар. Хотя двигатель несколько часов работал в закрытом помещении, посетители выставки не почувствовали ни дыма, ни гари, ни необычных запахов. Позднее эту машину демонстрировали командующему Ленинградским фронтом генерал-полковнику Л.А. Говорову. Тот одобрил идею. За эту работу Б.И. Шелища в декабре 1941 г. наградили орденом Красной Звезды. Само изобретение выдвинули на соискание Сталинской премии 1942 г. Но оно не прошло по конкурсу, поскольку тогда еще не было официального решения о принятии его на вооружение в масштабах страны. Позднее, когда такое решение приняли, к этому вопросу уже не вернулись.

К началу 1942 года слава изобретения младшего лейтенанта Шелища дошла до Ставки. Был выдан приказ о переезде техника в Москву для выполнения задания: обеспечить перевод на водород 300 двигателей в частях аэростатного заграждения столицы. Поставленная задача была выполнена. В ответ Шелищу предложили переехать в Москву, но лейтенант отказался. На это ленинградский «Кулибин» посетовал, что боевые товарищи могут расценить это как трусость, бегство из блокадного города и попросил вернуть его в свою часть. Немолодой седой генерал пристально посмотрел на лейтенанта и грустно покачал головой: «Ну и дурак!». Вернувшись в Ленинград, Борис Шелищ продолжил контролировать техническую часть службы аэростатных заграждений. Наградной лист Бориса Шелища alt=»Как в блокадном Ленинграде техник-самородок создал первый водородный двигатель для автомобиля» width=»620″ height=»auto» />Летом 1943 года Борис Исаакович чудом ухитрился оформить авторское свидетельство № 64209 на свое изобретение. Документы зафиксировали срок подачи заявки 8247(322526) в Народный комиссариат обороны — 28 июля 1943 г. В описании изобретения старший техник лейтенант Шелищ писал: «В основном задача была решена в ноябре 1941 года, а законченное оформление и массовое практическое применение изобретение получило во всех частях аэростатов заграждения Ленинградского и других фронтов в 1943-1944 годах».

После Победы аэростаты заграждения быстро расформировали: не стало «бросового» водорода, который служил топливом для двигателя. Но еще долгие годы списанные двигатели, которые во время войны питались водородом, работали в колхозах и совхозах. Прогрессивное изобретение было забыто после войны

Но, несмотря на то, что об изобретении Шелища на долгие годы забыли, честь талантливого человека сохранили. Так, в августе 1974 года в статье газеты «Правда» под названием «Топливо будущего — водород» академик В. Струминский писал: «Даже если в мире исчезнут уголь и нефть, СССР энергетическая катастрофа не грозит, поскольку советские ученые, опередив американскую науку, нашли альтернативный источник энергии — водород. В Сибирском отделении Академии наук СССР в 1968 году, на год раньше, чем американцы нашли способ использовать водород в качестве автомобильного топлива». Неожиданно после публикации статьи в редакцию пришло опровержение от группы ветеранов ПВО Ленинградского фронта. В ней они сообщали, что водород в качестве автомобильного топлива был применен еще в 1941 году в блокадном Ленинграде. Причем не в качестве эксперимента, а массово, как единственное топливо к двигателям внутреннего сгорания. А придумал и внедрил это техник-лейтенант 3-го полка аэростатных заграждений ПВО Ленинградского фронта Шелищ Борис Исаакович. Так что действительно, в вопросе создания водородного двигателя СССР перегнал Америку, но сделал это десятилетия назад.

Жизнь изобретателя

Родился талантливый мальчик 28 сентября 1908 года в Киеве в еврейской семье ремесленников среднего достатка. Отец Бориса был ткачом. Когда мальчику исполнилось 15 лет, отец умер. Чтобы помочь матери, мальчик взялся за ремесло, кормившее семью. В 20 лет тяготевший к механике молодой человек уехал в Ленинград и поступил на работу в типографию рабочим, но вскоре был призван на срочную службу в Красную Армию. Демобилизовавшись в 1932 году, не имеющий специального образования Борис только благодаря своим способностям прошел путь от рядового техника автопарка до главного механика фабрики «Лентрикотаж». Свое первое авторское свидетельство на «Устройство для регулирования подачи топлива к карбюратору двигателя на моторных повозках» Борис Исаакович получил в 1935 году. После войны Шелищ вернулся на должность главного механика родного предприятия. В 1945 году у него родился сын Петр. Позже Борис Исаакович работал на автотранспортных предприятиях города. Высшее образование Шелищ получил только в конце 50-х на факультете экономики Университета марксизма-ленинизма. К своему водородному изобретению в то время он не возвращался. Идея использовать водород как топливо появилось только в 60-годы в связи с мировым энергетическим кризисом. Итогом этих научных работ и стала статья в газете «Правда». После поступившего опровержения приоритет Б.И.Шелища подтвердила Комиссия по водородной энергетике Академии наук СССР.

В конце 70-х годов Бориса Исааковича неоднократно приглашали на различные научные мероприятия, где в своих выступлениях он подробно рассказывал о тех далеких героических днях. В сентябре 1979 года за полгода до своей смерти Шелищ сделал доклад «Водород вместо бензина» на секции Первой Всесоюзной школы молодых ученых в Донецке.

Скончался Борис Исаакович Шелищ 1 марта 1980 года. В Петербурге в поселке Хвойный (Воинская часть 17646 или 333 радиотехнический полк) есть музей ПВО. Здесь можно увидеть фотографию изобретателя, копию описания изобретения и тот самый гидрозатвор, сделанный из огненно-красного огнетушителя.

В 21 веке водородная энергетика получила новый толчок в развитии. В Российской Федерации этой проблематикой занимается Национальная ассоциация водородной энергетики. Символично, что ее возглавляет сын талантливого изобретателя Петр Борисович Шелищ. Рисунок А.А. Резанова

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button