Для чего на двигателях внутреннего сгорания применяют турбонаддув

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Схема турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува.

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Турбонаддув в автомобиле: принцип работы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

турбина в автомобиле

Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

пПринцип работы турбонаддува

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.

Читайте также: Чем отличается турбина от компрессора и что лучше?.

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма . На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива. Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Читайте также: Что такое турботаймер и для чего он нужен.

Турбонаддув: принцип действия, достоинства, недостатки

Преимущества и недостатки турбонаддува на автомобиле

Турбонаддув: принцип действия, достоинства, недостатки

Чтобы отвечать запросам современности, традиционный двигатель внутреннего сгорания должен обладать внушительным набором выдающихся показателей, которые традиционным конструктивным путём достигнуть всё сложнее. Именно поэтому даже в семейных автомобилях всё чаще применяется система принудительного нагнетания, или турбонаддув.

Передовые конструкторские разработки уже направлены не только на совершенствование наддува системы питания двигателя, которая была изобретена более ста лет назад, но и на оснащение аналогичной системой автомобильного выхлопа. Всё это должно вывести характеристики скромных по рабочему объёму моторов на небывалый уровень.

Для того чтобы понять, для чего нужен турбонаддув, а также как он действует, необходимо знать, что для полноценной работы двигателю внутреннего сгорания нужно не только топливо, но и воздух, который обеспечит его горение. Фактически, в камеру сгорания должна поступать топливовоздушная смесь в определённой пропорции. После этого происходит сгорание смеси и по завершении рабочего цикла – удаление выхлопных газов.

Классический турбонагнетатель позволяет добиться увеличения мощности двигателя за счёт создания избыточного давления воздуха в камере сгорания, таким образом повышая воспламеняемость смеси. Турбонаддув фактически создаёт давление, достаточное для того, чтобы сжать воздух и закачать в двигатель большее его количество, чем при атмосферном давлении.

Читайте также  Двигатель к4м гнет ли клапана

Основной рабочий элемент нагнетателя – лопастная крыльчатка, которая выполняет двойную функцию: засасывает воздух в камеру турбины, а затем, благодаря огромной скорости вращения в 150-200 тысяч оборотов в минуту, создаёт давление, способное уменьшить объём, занимаемый этим воздухом. Как известно из курса физики, в процессе сжатия происходит нагревание воздуха, что можно уже отнести к недостаткам этой системы. Именно необходимость решения данной проблемы вынудила конструкторов прибегнуть к использованию промежуточного охлаждения воздуха, перекачиваемого из турбины в мотор.

Устройство для такого охлаждения получило название «интеркулер» и использует принцип теплообменника, понижающего температуру воздуха с помощью охлаждающей жидкости.

Кардинальных отличий между системами турбонаддува, устанавливаемыми на бензиновых и дизельных двигателях, нет, всё зависит только от степени наддува. Как правило, дизельные моторы оснащаются более производительными конструкциями, а бензиновые – создающими небольшое давление наддува. Это обусловлено тем, что при существенном повышении оборотов, происходящем при наличии турбокомпрессора, бензиновые моторы склонны к возникновению детонации, поэтому их системы не столь эффективны.

Преимущества турбонаддува:

Дополнительная «бесплатная» мощность

Принято считать, что установка дополнительной турбины на выпускном коллекторе двигателя внутреннего сгорания даст дополнительную энергию для вращения аналогичного устройства на впуске, что позволит вместо простого выброса выхлопных газов получить дополнительный источник энергии для турбонаддува.

Утверждение это довольно спорное, поскольку на протяжении десятилетий автомобильные инженеры боролись за снижение сопротивления выпуска, что в свою очередь снижает внутренние потери и повышает мощность мотора. Если вмонтировать в эту систему генерирующее устройство, то мы получим существенный рост сопротивления на выходе из мотора. Таким образом, турбонаддув – это не бесплатная дополнительная энергия, уместнее использовать понятие «дешёвая дополнительная энергия».

Механика этого процесса предельно проста. Турбокомпрессор, создающий избыточное давление на впуске, состоит из двух основных элементов – турбинное и компрессорное колесо. Турбинное колесо использует энергию выхлопных газов для того, чтобы создавать крутящий момент для компрессорного, которое и сжимает воздух. Сам компрессор встраивается в контур системы охлаждения двигателя, поскольку в процессе работы его температура достигает высоких величин. Для регулирования степени наддува используется перепускной клапан, который при необходимости может пускать часть выхлопных газов в обход турбины, чтобы снизить давление внутри системы.

Оптимизация соотношения массы двигателя и его веса

Переход на технологию турбонаддува позволил отказаться от необходимости увеличения рабочего объёма и количества цилиндров для повышения мощности двигателя. Это позволяет получить хорошие показатели от небольших и, соответственно, лёгких моторов, в результате чего уменьшается и снаряженная масса автомобиля, и, как следствие, возрастает динамика разгона и сокращается тормозной путь.

Экономичность

Если сравнивать показатели удельного расхода топлива турбированного мотора и атмосферного двигателя аналогичной мощности, то разница в пользу первого будет очевидна. Это обусловлено тем, что на один рабочий цикл затрачивается меньше топлива, за счёт повышения полноты его сгорания. Фактически мы имеем обеднённую смесь, негативные факторы которой полностью компенсируются избыточным давлением воздуха.

Недостатки турбонаддува:

Провал в разгонной динамике или «турбояма»

Суть этого явления заключается в том, что при разгоне с малых оборотов, вместо интенсивного ускорения, мы получаем вялую динамику, зачастую уступающую атмосферным аналогам. Дело в том, что работа турбонаддува напрямую связана с частотой вращения коленвала двигателя (при этом механической связи между этими элементами нет), и если эта величина невелика, то и эффективности от наддува не будет.

Кроме того, определённое влияние на этот процесс оказывает и большая инертность системы надува, поскольку для создания необходимого давления на впуске требуется определённое время. Для решения этой задачи проводится огромная работа, результаты которой уже позволили минимизировать продолжительность такого провала в динамике. Кроме того, переход на автоматическую трансмиссию или использование вариатора позволяет автомобилю автоматически при разгоне переходить на пониженную передачу, что сводит негативное явление к нулю.

Конструктивное решение вышеописанной проблемы инертности наддува сводится к внедрению одного из следующих механизмов:

— битурбонаддув (двойной наддув);
— турбина с адаптивной геометрией;
— комбинированный наддув.

Двойной турбонаддув (битурбонаддув) заключается в применении двух параллельных систем наддува и базируется на том принципе, что две небольшие турбины обладают меньшей инерцией, чем одна полноразмерная. Количество цилиндров, для которых каждая из этих турбин создаёт необходимое давление, делится между ними поровну. Разновидностью этой системы является использование нескольких компрессоров, активируемых на разных оборотах двигателя (каждый в своём рабочем диапазоне).

Турбина с адаптивной геометрией позволяет повысить эффективность системы за счёт оптимизации потока выхлопных газов путём изменения площади впускного канала.

Комбинированный наддув представляет собой систему, состоящую из механического нагнетателя, обеспечивающего необходимое давление на малых оборотах, и турбокомпрессора, включающегося в работу по достижении определённой частоты вращения коленвала.

Повышенная температура

Как уже упоминалось выше, сжатие воздуха неразрывно связано с его нагревом, что негативно сказывается на работе двигателя. Ввиду этого, необходимо вводить дополнительную систему охлаждения, которая также является потребителем вырабатываемой энергии.

Таким образом, турбонаддув является отличным способом повышения эффективности двигателя внутреннего сгорания за счёт оптимизации процесса сжигания топлива. Несмотря на все недостатки, это эффективный способ достижения высоких показателей мощности и экономичности. Кроме того, работы по совершенствованию этой системы наглядно демонстрируют, что несмотря на её многолетнюю историю, потенциал турбонаддува ещё не исчерпан.

Принцип работы турбины. Как работает турбонаддув

turboТурбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

В настоящее время турбонаддув является наиболее эффективной системой повышения мощности двигателя без увеличения частоты вращения коленчатого вала и объема цилиндров. Помимо повышения мощности турбонаддув обеспечивает экономию топлива в расчете на единицу мощности и снижение токсичности отработавших газов за счет более полного сгорания топлива.

Система турбонаддува применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов (1000°С против 600°С у дизелей) и соответствующий нагрев турбонагнетателя.

Несмотря на различия в конструкции отдельных систем, можно выделить следующее общее устройство турбонаддува — воздухозаборник и далее последовательно воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все элементы объединяют соединительные патрубки и напорные шланги.

Большинство элементов турбонаддува являются типовыми элементами впускной системы. Отличительной особенностью турбонаддува является наличие турбокомпрессора, интеркулера и новых конструктивных элементов управления.

Турбокомпрессор (другое наименование – турбонагнетатель, газотурбинный нагнетатель) является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе. Конструкция турбокомпрессора объединяет два колеса — турбанное и компрессорное, расположенные на валу ротора. Каждое из колес, а также вал с подшипниками помещены в отдельные корпуса.

11

Турбинное колесо воспринимает энергию отработавших газов. Колесо вращается в корпусе специальной формы. Турбинное колесо и корпус турбины изготавливаются из жаропрочных материалов (сплавы, керамика).

Компрессорное колесо всасывает воздух, сжимает и нагнетает его в цилиндры двигателя. Компрессорное колесо также вращается в специальном корпусе.

Турбинное и компрессорное колеса жестко закреплены на валу ротора. Вал вращается в подшипниках скольжения. Подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала. Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца.

В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбонагнетателей. Корпус подшипников турбонагнеталея включен в двухконтурную систему охлаждения двигателя.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа .

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан (вейстгейт, wastegate). Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува системой управления двигателем.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана (blowoff) или перепускаться на вход компрессора с помощью байпас-клапана (bypass).

Принцип работы системы турбонаддува

Работа системы турбонаддува основана на использовыании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

Читайте также  Причины заклинило двигатель

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа, т.н. «турбояма» (turbolag), с другой — резкое увеличение давления наддува после преодоления «турбоямы», т.н. «турбоподхват».

«Турбояма» обусловлена инерционностью системы (для повышения давления наддува при резком нажатии на педаль газа требуется определенное время), которая приводит к несоответствию между потребной мощностью и производительностью компрессора. Существует несколько способов решения данной проблемы:

  1. применение турбины с изменяемой геометрией;
  2. использование двух последовательных или параллельных турбокомпрессоров (twin-turbo или bi-turdo);
  3. комбинированный наддув.

Турбина с изменяемой геометрией (VNT – турбина) обеспечивает оптимизацию потока отработавших газов за счет изменения площади входного канала. Турбины с изменяемой геометрией нашли широкое применение в турбонаддуве дизельных двигателей, к примеру турбонаддув двигателя TDI от Volkswagen.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo (BMW) и даже четыре турбокомпрессора — quad-turbo (Bugatti).

Комбинированный наддув (twincharger) объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув двигателя TSI от Volkswagen.

Устройство и принцип работы турбонаддува

Некоторые машины отличаются от своих собратьев той же марки шильдиком «Turbo» на крышке багажника. Говорит он о том, что в таком автомобиле имеется турбонаддув двигателя. Что же это значит и для чего инженеры оснащают моторы дополнительными устройствами?

Теория турбонаддува

С самого начала эпохи автомобилестроения производители бились над задачей увеличения мощности двигателя внутреннего сгорания. Мощность силового агрегата напрямую зависит от его рабочего объема и количества топливно-воздушной смеси, подаваемой в цилиндры. Таким образом, получается, что форсировать мотор можно либо, увеличив его объем (при этом нужно решить задачу, как поместить увеличившийся агрегат в автомобиле), либо, каким-то образом загнать в цилиндры большее количество воздуха и увеличить подачу топлива.

Первый способ влечет за собой значительный перерасход горючего, к тому же увеличиваются размеры и масса двигателя, что не всегда допустимо. Для решения задачи вторым способом применяются системы принудительного нагнетания воздуха в цилиндры.

Виды турбонаддува

Существует три способа увеличения подачи воздуха:

  1. резонансный (в данном случае используется кинетическая энергия воздуха во впускном коллекторе, нагнетатель не нужен);
  2. механический (воздух нагнетается при помощи компрессора, приводимого в действие от двигателя);
  3. газотурбинный (для работы нагнетателя используется энергия отработавших газов).

наддув резонансный

Поскольку в первом случае нагнетатель не применяется, а повышенное давление воздуха создается за счет четко выверенной формы и длины впускного коллектора, резонансный наддув в рамках данной статьи рассматриваться не будет. Гораздо интереснее два других варианта турбонаддува.

Механический наддув

Использование компрессора – это один из способов увеличить подачу воздуха в цилиндры двигателя. Принцип его работы заключается в следующем: компрессор приводится в действие от шкива коленчатого вала, и начинает нагнетать воздух с первых секунд работы мотора.

механический наддув

Плюсы такой системы в том, что нагнетание воздуха происходит на любых режимах работы силового агрегата, в том числе при минимальных оборотах, а давление увеличивается с ростом оборотов коленвала. Кроме того, в случае использования компрессора отсутствует такое явление, как турбояма.

Разумеется, данное устройство наддува имеет и свои минусы. Самым главным недостатком является то, что на обеспечение работы нагнетателя расходуется часть мощности двигателя автомобиля, а значит, снижается его КПД. Помимо этого, механический наддув требует больше места для монтажа, нуждается в специальном приводе (для этого используется зубчатый ремень) и является источником повышенного шума.

Данный вид наддува появился раньше газотурбинного, но, несмотря на некоторую архаичность, его до сих пор можно встретить в современном автомобиле. Наиболее ярким примером может служить Мерседес, шильдик «compressor» на багажнике некоторых моделей этой марки указывает на то, что под капотом скрывается мотор, оснащенный системой механического наддува.

Газотурбинный наддув

Устройство турбонаддува

Чаще всего моторы современных автомобилей оснащаются газотурбинными нагнетателями. Их устройство сходно с механическими компрессорами, различается лишь принцип действия – вместо зубчатого ремня работают выхлопные газы.

«Турбина включилась, и машине как будто пинка дали», — такое довольно часто можно услышать от автовладельцев, моторы машин которых имеют турбонаддув. На самом деле турбина – это только одна из составных частей всей системы, представляющая собой крыльчатку, жестко закрепленную на валу и приводящую в действие другую крыльчатку, также закрепленную на этом же валу. Устройство турбонаддува газотурбинного типа несколько сложнее.

Основными составными частями являются:

  • корпус;
  • две крыльчатки;
  • вал, на котором располагаются крыльчатки;
  • две улитки, в которых вращаются крыльчатки;
  • три подшипника скольжения (один упорный и два опорных);
  • перепускной клапан (необходим для стравливания избыточного давления).

Принцип работы турбонаддува

принцип работы турбонаддува

Принцип работы турбонаддува довольно прост. На одном валу расположены крыльчатка-нагнетатель и крыльчатка-турбина, каждая из которых вращается в своей улитке. Отработавшие газы из выпускного коллектора проходят через одну из улиток и вращают крыльчатку-турбину. Вращение посредством общего вала передается второй крыльчатке, которая повышает давление атмосферного воздуха, проходящего через вторую улитку.

Турбонаддув — плюсы и минусы

Плюсы

Основные плюсы турбонаддува – повышение КПД и экономичности двигателя автомобиля. Причина этого в том, что система приводится в действие за счет энергии отработавших газов, не отнимая мощность у мотора. Необходимо различать удельную и общую экономичность двигателя автомобиля.

турбонаддув

Силовой агрегат, имеющий турбонаддув, потребляет больше топлива, чем «атмосферник» того же объема, поскольку большее количество воздуха, загнанного в цилиндры, позволяет сжечь больше топлива, но массовая доля горючего из расчета на единицу мощности в час всегда ниже, чем у мотора без турбонаддува.

Перечисляя плюсы, необходимо упомянуть лучшую экологичность «наддутых» двигателей. Турбонаддув обеспечивает более полное сгорание горючего. Кроме того, наддув понижает температуру камеры сгорания, что приводит к уменьшению образования оксида азота.

Минусы

У турбонаддува есть и свои минусы. Во-первых, такое устройство требует аккуратного обращения. Дело в том, что масло к подшипникам компрессора подается под давлением, пока работает двигатель автомобиля. После поездки, когда мотор горячий, стоит только выключить зажигание, и масло подаваться перестанет. Если двигатель работал в тяжелых режимах, то вполне вероятен перегрев компрессора и выход его из строя. Чтобы избежать поломки, необходимо дать мотору поработать некоторое время на холостых оборотах, и только потом заглушить. Некоторые автомобили оснащаются турботаймером, который берет эту заботу на себя.

Другие значительные минусы – это ограниченный диапазон эффективной работы турбокомпрессора и турбояма (замедленный отклик турбины на нажатие педали газа). Система турборнаддува эффективно работает в довольно узком диапазоне частоты вращения коленвала, который зависит от размеров турбины. Для решения данной проблемы производители часто применяют двойной турбонаддув, т.е. устанавливают две турбины с крыльчатками разного диаметра, каждая из которых эффективно работает в разных диапазонах, либо две одинаковых турбины (Би-турбо и Твин-турбо).

В первом случае система турбонаддува расширяет диапазон эффективности. Принцип действия заключается в том, что там, где первая турбина теряет эффективность, подхватывает вторая. Во втором достигается максимальная производительность системы. Устанавливается двойной турбонаддув как на рядные, так и на V-образные моторы. Для уменьшения эффекта турбоямы производители стараются максимально снизить вес валов и крыльчаток, чтобы уменьшить инерцию.

Турбонаддув в ДВС

Здравствуйте уважаемые читатели моего блога. В этой статье рассотрим турбонаддув ДВС.

Мощность, развиваемая двигателем, зависит от количества воздуха и смешанного с ним топлива, которое может быть подано в двигатель. Если нужно увеличить мощность дви­гателя, следует увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не даст эффекта до тех пор, пока не появится достаточное для его сгорания количество воздуха, иначе образуется избыток несгоревшего топлива, что приво­дит к перегреву двигателя и повышенной дымности.

Увеличение мощности двигателя может быть дости­гнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение рабочего объема увеличивает вес, размеры двигателя и, в конечном итоге, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникающих при этом технических проблем, особенно для двигателей с большим рабочим объемом.

Технически приемлемым решением проблемы увеличения мощно­сти является использование нагнетателя (компрессора). Это озна­чает, что подающийся в двигатель воздух сжимают перед его впуском в камеру сгорания.

Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при прежнем рабочем объеме и той же частоте вращения коленчатого вала мы получаем большую мощность.

Читайте также  Проверяют ли при постановке на учет номер двигателя

Существует две основные системы наддува: с механическим приводом (рис. 1 а) и «турбо» (рис. 1 б) (использующие энергию отработавших газов). Кроме того, существуют также комбинированные системы, например, турбокомпаундная (рис.1 в).

Турбонаддув в ДВС

Рис. 1. Системы наддува двигателей

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и компрессором. В турбоком­прессоре давление воздуха получают благодаря вращению турбины потоком отработавших газов.

Турбокомпрессор состоит из двух турбин, состоящих из нагнетательного колеса 2 и приводного 9, связанных между собой при помощи вала (рис. 2). Вал установлен на двух опорах 11 и 12, на которые постоянно подается масло, охлаждающее и смазывающее опоры.

Обе турбины вращаются в одном направле­нии и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они разгоняются до боль­шой скорости (около 10 000об/мин) и вступают в контакт с лопатками приводного колеса 9, и преобразует их кинетическую энергию в механическую энергию вра­щения (крутящий момент). С такой же скорость вращается и нагнетательное колесо турбины 2, которое подает сжатый воздух к двигателю. Нагнетательное колесо 2 выполнено таким образом, что уже при небольшом потоке отработавших газов достигается достаточное давление нагнетаемого воздуха. В режиме полной нагрузки двигателя достигается максимальное избыточное давление (1,1…1,6 атм) при частоте вращения коленчатого вала около 2000 об/мин и поддерживается постоянным при дальнейшем наборе частоты вращения вплоть до максимальной.

Между двигателем и турбокомпрессором существует связь только через поток отработавших газов. Частота вращения турбин напрямую не зависит от частоты вращения коленчатого вала двигателя и характери­зуется некоторой инерционностью, т.е. сначала увеличивается подача топлива, увеличивается энергия потока отработавших газов, а затем уже увеличивается частота вращения турбины и давление нагнетания, и в ци­линдры двигателя поступает еще больше воздуха, что дает возмо­жность увеличить подачу топлива.

Турбонаддув в ДВС

Рис. 2. Турбокомпрессор:

1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11,12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана

Для предотвращения повышения давления больше необходимого при высоких частотах вращения предусмотрен предусмотрено специальное устройство состоящее из сбрасывающего клапана 5 и диафрагмы 6 с пружиной. Полость перед диафрагмой связана с давлением потока входящего воздуха через трубопровод 1. При увеличении давлении, которое происходит с ростом частоты вращении коленчатого вала, диафрагма прогибается сжимая пружины и сбрасывающий клапан открывается. Отработавшие газы при этом проходят через дополнительный обводной канал С, что уменьшает частоту вращения приводного колеса турбины, а значит и нагнетательного колеса. Давление наддува при этом становится постоянным.

Для двигателей, работающих в широком диапазоне частот вращения коленчатого вала (к примеру, в легковом автомобиле), высокое давление наддува жела­тельно даже на низких частотах. Именно поэтому будущее принадле­жит турбокомпрессорам с регулируемым давлением. Небольшой диа­метр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, т.е. турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого значения.

Для удовлетворения постоянно возрастающих требований, кото­рые сегодня предъявляются к автомобильной технике в области рас­хода топлива, токсичности отработавших газов и уровня шума, разрабатываются электронные системы управлением наддувом, одна из которых представлена на рис. 3.

На первом этапе, на основании определенного числа параметров, таких как температура охлаждающей жидкости, масла, впускаемого воздуха и отработавших газов, анализируется состояние двигателя. Измеряются также частота вращения коленчатого вала, положение педали акселератора и другие параметры. Все эти данные анализируются компьютером и используются для определения идеального в данных условиях давле­ния наддува для двигателя.

На втором этапе это значение давления передается на исполнительные устройства, которые регулируют давление во впу­скной системе. При определении этого давления учитываются также критические условия работы двигателя, в частности, детонация. Аку­стические датчики позволяют распознать самовоспламенение, наско­лько малым бы оно ни было. Давление наддува в этом случае пони­жается. Эта операция повторяется до тех пор, пока детонация не ис­чезнет. Когда детонация прекращается, давление наддува снова во­зрастает до первоначального значения. Компьютер также определяет идеальное давление наддува в случае повторяющейся детонации, во­зникающей, например, из-за использования низкокачественного то­плива.

Электромагнитный клапан получает электрический сигнал, кото­рый определяет время его открывания, и работает, соответственно, как регулятор давления наддува.

Таким образом, на мембрану воздействует не все давление над­дува, а только его большая или меньшая часть, которая зависит от положения электромагнитного клапана.

При нажатой педали акселератора компьютер подает команду на закрытие клапана, и все отработавшие газы направляются в турбину, из-за чего давление наддува возрастает и двигатель развивает зна­чительную мощность, что делает возможным резкое ускорение авто­мобиля. Как только желаемая скорость движения достигнута сбрасывающий клапан открывается, и давление наддува становится обычным.

Турбонаддув в ДВС

Рис. 3. Электронное управление турбонаддувом

Вариантом системы наддува для двигате­лей легковых автомобилей является вол­новой нагнетатель воздуха, известный также под названием Comprex. Приводи­мый от двигателя через зубчатый ремень 2, разделенный на секции ротор 7 вра­щается в цилиндрическом корпусе, име­ющем с торцов щелевые окна для прохо­да свежего воздуха и выхода отработавших газов (рис. 4). Система окон и полостей выполнена особым об­разом, что позволяет волны давления потока 5 отработавших газов преобразовывать в повы­шенное давление потока 1 свежего воз­духа.

Турбонаддув в ДВС

Рис. 4. Волновой нагнетатель:

1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов под низким давлением; 7 – ротор; 8 – щелевые окна

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой об-менник, как и механический нагнета­тель, автоматически реагирует на изме­нения нагрузки изменением давления наддува. При постоянном передаточном отноше­нии между двигателем и волновым нагнетателем энергооб­мен оптимален только для одного рабочего режима. Для устране­ния этого недостатка на торцах корпуса имеется ряд воздуш­ных «карманов» раз­ной формы и размера, благодаря которым диапазон оптималь­ной работы нагнетате­ля расширяется. Кро­ме того, это позволяет достичь благоприят­ного протекания кри­вой крутящего момен­та, чего невозможно осуществить с помо­щью других методов наддува.

Волновой, нагнета­тель, по сравнению с другими способами наддува, требует мно­го места для ремен­ной передачи и систе­мы трубопроводов. Это усложняет возможность его установки в условиях огра­ниченного объема подкапотного про­странства автомобиля.

Для дизельных двигателей находит применение нагнетатель с изменяемой геометрией турбины, позволяющий ограничивать поток отработавших газов через турбину при высокой частоте вращения коленчатого вала двигателя (рис. 5).

Турбонаддув в ДВС

Рис. 5. а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов

Подвижные направляющие лопатки 3 соплового аппарата изменяют попе­речное сечение каналов, через которые отработавшие газы устремляются на крыльчатку турбины. Этим они согласовывают возникаю­щее в турбине давление газа с требуе­мым давлением наддува. При низкой на­грузке на двигатель подвижные лопатки открывают небольшое поперечное сече­ние каналов так, что увеличивается про­тиводавление отработавших газов. Поток газов развивает в турбине высокую скорость, обеспечи­вая высокую частоту вращения вала на­гнетателя (рис.,а). При этом поток отработавших газов дейст­вует на более удаленную от оси вала об­ласть лопаток крыльчатки турбины. Та­ким образом, возникает большее плечо силы, которое дополнительно увеличи­вает крутящий момент. При высокой на­грузке направляющие лопатки открыва­ют большее поперечное сечение кана­лов, что уменьшает скорость течения потока отработавших газов (рис., б). Вследствие этого турбо­нагнетатель при равном количестве отработавших газов меньше ускоряется и работает с мень­шей частотой при большем количестве газов. Этим способом ограничивается давление наддува. Поворотом управляющего кольца 2 изменяется угол направления лопаток, которые устанавливаются на желаемый угол либо непосредственно отдельным управляющим рычагом 4, укрепленным на лопатках, либо поворотными кулачка­ми. Поворот кольца осуществляется при помощи управляющего пневматического цилиндра 5 под действием разрежения или давления воздуха либо, как вариант, при помощи электродвигателя с обрат­ной связью по положению лопаток (дат­чик положения). Нагнетатель с из­меняемой геометрией в положении покоя открыт и поэтому безопасен, т. е. при от­казе управления ни он сам, ни двигатель не повреждаются. Происходит лишь по­теря производительности на низких час­тотах вращения коленчатого вала.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: