Двигатель

Система подачи воздуха в двигатель

Система подачи воздуха в двигатель

Система впуска, как увеличить подачу воздуха в двигатель

Воздух – крайне необходимый элемент для образования рабочей смеси. Многое зависит от атмосферного давления, количества воздуха, его чистоты. Немаловажна и геометрия движения впускного воздуха, от чего зависит стабильность работы двигателя, а также его КПД.

Впускная система двигателя

Конструкция впускной системы двигателя

Простейшая система впуска инжекторного двигателя состоит из следующих деталей:

  • резонатор (воздухозаборник),
  • корпус воздушного фильтра с фильтром,
  • резиновая гофра от корпуса фильтра до дроссельной заслонки,
  • ДМРВ или датчик абсолютного давления и датчик температуры воздуха,
  • дроссельная заслонка с регулятором холостого хода (РХХ) и датчик положения дроссельной заслонки (ДПДЗ),
  • впускной коллектор (ресивер).

Обзор элементов системы впуска двигателя

Система впуска двигателя

Резонатор

Представляет собой пластиковый воздухозаборник, который, как правило, установлен под фарами возле радиаторов. Патрубок устанавливается по ходу движения автомобиля, чтобы захватывался поток воздуха.

Конструкция воздухозаборника осуществлена таким образом, чтобы избежать попадания воды в цилиндры.

Корпус воздушного фильтра

Пластиковый короб, в котором устанавливается фильтр. Корпус максимально герметичен, обычно имеет отстойник для мусора.

Фильтр расположен во всей площади корпуса, в составе которого целлюлозная бумага с прорезиненными краями. Рассчитан фильтр таким образом, чтобы обеспечить необходимое сопротивление.

Дроссельный патрубок

Обычно представляет собой гофрированный патрубок. В гофре имеется отдельный патрубок, через который во впускной коллектор попадают картерные газы. К патрубку присоединяется ДМРВ, крепится хомутами с двух сторон во избежание подсоса неучтенного воздуха.

Датчик имеет в своей основе платиновую проволоку и никелевую сетку в качестве чувствительного элемента. Работа датчика заключается в подсчете впускаемого воздуха, а полученная информация уже передается на электронный блок управления.

Получив данные от датчика массового расхода воздуха, блок управления уже знает, в каком количестве подать топливо.

Дроссельная заслонка

Дроссельная заслонка нужна для дозирования впускаемого воздуха, непосредственно влияющее на количество впрыскиваемого топлива.

За положением открытия заслонки отвечает электронный потенциометр ДПДЗ (датчик положения дроссельной заслонки). В зависимости от открытия заслонки корректируется количество подачи топлива.

Устанавливаемый либо на дросселе, либо на коллекторе, регулятор холостого хода (РХХ), отвечает за поток воздуха в обход закрытого дросселя в режиме холостого хода.

Впускной коллектор

Впускной коллектор равномерно распределяет воздух по цилиндрам, создавая необходимую геометрию потока, а также играет роль в смесеобразовании.

Может быть пластиковым или железным. У современных двигателей ресивер с изменяемой геометрией потока воздуха, а за геометрию отвечают двигающиеся шторки.

Доступные методы увеличения подачи воздуха

От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:

Система впуска воздуха

Установка воздушного фильтра нулевого сопротивления

К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.

Холодный впуск

Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.

Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.

Установка впускного коллектора с иной геометрией

Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.

Резюме

Вышеуказанные операции по изменению количества впускаемого в систему воздуха, а также геометрии его движения, приводят к незначительному увеличению мощности. Для обеспечения стабильной работы впускной системы требуется ежегодная промывка дросселя и датчиков, а также сокращенный срок замены воздушного фильтра.

О системе подачи воздуха

Впускная система (другое наименование – система подачи воздуха) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси. Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива. Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.

В своей работе система впуска взаимодействует со многими системами двигателя, в том числе с системой впрыска, системой рециркуляции отработавших газов, системой улавливания паров бензина, вакуумным усилителем тормозов. Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.

Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизелных двигателей используется турбонаддув.

Конструкция впускной системы включает воздухозаборник, воздушный фильтр, дроссельную заслонку, впускной коллектор. на отдельных конструкциях двигателей используются впускные заслонки. Все элементы впускной системы соединены патрубками.

Схема впускной системы: 1-воздушный фильтр,2-расходомер воздуха,3-адсорбер,4-запорный клапан системы улавливания паров бензина,5-блок управления дроссельной заслонкой,6-датчик давления во впускном коллекторе,7-клапан управления впускными заслонками,8-вакуумный привод впускных заслонок,9-датчик положения впускной заслонки,10-датчик давления в магистрали вакуумного усилителя тормозов,11-клапан системы рециркуляции отработавших газов,12-блок управления системы управления двигателем.

Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.

Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.

Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.

Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки. Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно. Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.

Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы: входные датчики, блок управления иисполнительные устройства.

К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие входные датчики: расходомер воздуха, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, положения впускной заслонки, положения клапана рециркуляции, давления в магистрали вакуумного усилителя тормозов.

Читайте также  Как понять объем двигателя

Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга. Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.

Работой впускной системы управляют следующие исполнительные устройства:

  • блок управления дроссельной заслонкой;
  • электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
  • запорный клапан системы улавливания паров бензина;
  • электромагнитный клапан системы рециркуляции отработавших газов.

Исполнительные устройства активирует блок управления двигателем.

Принцип работы впускной системы

Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:

  • послойное смесеобразование;
  • бедное гомогенное смесеобразование;
  • стехиометрическое гомогенное смесеобразование.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью. Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.

Стехиометрическое (легковоспламеняемое) гомогенное (однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.

На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.

Уважаемый посетитель! Мы физически не можем отвечать на каждый комментарий..
Для того, чтобы Вы могли самостоятельно (или с помощью ближайшего автосервиса) устранить неисправности дизеля, мы разработали ОнлайнДиагностику. Это интерактивное руководство, которое содержит все известные причины неисправностей дизельных двигателей и указывает пути достижения правильной работы конкретного двигателя.

Приглашаем вас воспользоваться ОнлайнДиагностикой прямо сейчас!

Оставить комментарий:

Ири́на Муцу́овна Хакама́да.:

Правда очень часто совсем не за большинством, а за маленьким храбрым человеком. Это надо помнить и двигаться вперед – что бы ни случилось.

Система питания воздухом двигателя

Система питания воздухом служит для очистки его от пыли и подвода к цилиндрам двигателя.

Основная функция рассматриваемой системы — очистка воздуха от пыли, поскольку, попадая в цилиндр двигателя, ее частицы вызывают интенсивное абразивное изнашивание деталей кривошипно-шатунного механизма, в основном стенок цилиндров, поршневых колец, шеек и подшипников коленчатого вала. Износ приводит к снижению мощности двигателя, сокращению срока его службы, увеличению расхода топлива и смазочного масла. Если воздух, поступающий в цилиндры, не очищать, то срок службы двигателя резко уменьшается. Например, при движении по проселку гусеничной машины без воздухоочистителя выход из строя двигателя происходит после 15… 20 ч работы.

В систему питания воздухом входят воздухозаборник, воздухоочиститель и впускной коллектор, по которому очищенный воздух поступает из воздухоочистителя к цилиндрам двигателя. В некоторых случаях система питания может включать в себя устройства отсоса пыли из пылесборников воздухоочистителей.

Экспериментально установлено, что практически безвредны для работы двигателя пылинки размером 0,001 мм. Однако такая степень очистки воздуха связана со значительными потерями мощности, поэтому допускается попадание в двигатель частиц большего размера, но в очень малой концентрации.

Параметр воздуха, характеризующий концентрацию пыли в нем, называется запыленностью. Под запыленностью воздуха понимают массу пыли в граммах, содержащейся в 1 м3 воздуха. Если запыленность не превышает 0,001 г/м3, то пыль практически не влияет на работу двигателя. На входе в воздухоочиститель запыленность воздуха изменяется в широких пределах и зависит в основном от следующих факторов: климатические и дорожные условия, конструкция ходовой части, скорость движения и высота воздухозаборника над уровнем дороги. Особенно существенно она меняется по высоте.

Воздухоочиститель ТС должен удовлетворять следующим требованиям:

  • обеспечивать высокую степень очистки
  • иметь минимальное и стабильное во времени сопротивление проходу воздуха
  • обладать малой массой и небольшими габаритами
  • иметь ресурс, равный ресурсу двигателя
  • длительно работать без промывки или смены фильтрующего элемента
  • обеспечивать малую трудоемкость работ по обслуживанию и эффективное глушение шума при впуске

Конструкции воздухоочистителей современных колесных и гусеничных машин отличаются многообразием. Однако среди них можно выделить следующие основные типы: инерционные, инерционно-центробежные, фильтрующие, комбинированные, т.е. имеющие не менее двух ступеней очистки.

В инерционных воздухоочистителях используется сила инерции движущихся с большой скоростью пылинок. При резком изменении направления движения воздуха в этих очистителях частицы пыли продолжают двигаться по инерции в первоначальном направлении и, вылетая из воздушного потока, поступающего в двигатель, удаляются наружу либо задерживаются в пылесборниках или специальных масляных ваннах.

В инерционно-центробежных воздухоочистителях наряду с силами инерции, возникающими при резком изменении направления потока воздуха, используются также центробежные силы: воздух, проходя через такой очиститель, закручивается с помощью спиральных направляющих, тангенциального (расположенного по касательной к цилиндрической стенке) входа или другими способами. Частицы пыли отбрасываются центробежным силами к стенке корпуса воздухоочистителя и скатываются по ней в пылесборник.

Инерционно-центробежные воздухоочистители без вращающихся деталей называются циклонами. Существуют также инерционно-центробежные воздухоочистители роторного типа, в которых очистка воздуха от пыли осуществляется за счет действия центробежных сил, вызванных вращающимся ротором. В таком очистителе ротор вращается обычно вследствие взаимодействия его лопастей с потоком воздуха, стремящимися попасть во впускную трубу из-за разрежения, создаваемого работающим двигателем.

Серьезным преимуществом инерционных и инерционно-центробежных воздухоочистителей является возможность выброса сухой пыли из их пылесборников в атмосферу путем отсоса. Это особенно важно при сильной запыленности воздуха, когда необходимо непрерывное удаление пыли. Возможность отсоса сухой пыли из пылесборника обусловлена разрежением, создаваемым в выпускной трубе двигателя с помощью эжекционного устройства. Основной недостаток инерционных и инерционно-центробежных воздухоочистителей — недостаточно высокая эффективность при очистке воздуха от мельчайших частиц.

Фильтрующие воздухоочистители при очистке воздуху от пыли обеспечивают его фильтрацию в пористых материалах или адсорбцию пылевых частиц на смоченных маслом поверхностям В качестве фильтрующего элемента могут применяться смоченные маслом металлические сетки, промасленные кассеты с капроновой ,или проволочной набивкой, пропитанная маслом полиуретановая пена, синтетические материалы на перфорированном каркасе и т.д. Однако в настоящее время наиболее широкое распространение получили сухие фильтрующие элементы из картона, уложенного «гармошкой». Картонные фильтры, эффективные при любом режиме работы двигателя, задерживают более 99 % частиц размером свыше 2 мкм.

Читайте также  Подбор жиклеров под объем двигателя

Относительно недавно на некоторых ТС начато использование так называемого марлевого фильтра, в котором помимо обычных принципов фильтрации в пористых материалах реализуется принцип удержания пылевых частиц на поверхности фильтрующего элемента за счет статического электричества. Дело в том, что двойной каркас из алюминиевой сетки и пропитанная специальным силиконовым составом марлевая набивка такого фильтра образуют своеобразный конденсатор, который заряжается статическим электричеством при трении между пылинками. В результате пылинки как бы налипают на наружную поверхность фильтра, образуя подобие «шубы». Ресурс такого фильтрующего элемента значительно больше, чем у обычного картонного, так как пыль не остается внутри фильтра, а скапливается на его поверхности и может быть легко удалена при очередном техническом обслуживании.

Достоинством фильтрующих воздухоочистителей является их способность задерживать мельчайшие частицы пыли, а недостатком — необходимость периодической очистки, промывки или замены фильтрующих элементов.

Комбинированные воздухоочистители сочетают в себе преимущества очистителей рассмотренных типов. Они широко используются как на колесных, так и на гусеничных машинах. Чаще всего применяют две ступени очистки. На первой ступени (действует инерционный очиститель или циклон) из воздуха удаляются наиболее крупные и тяжелые частицы, на второй (фильтрующий очиститель) — мелкие пылинки.

Назначение воздухозаборника и особенности системы подачи воздуха в двигатель

Принцип действия двигателя внутреннего сгорания заключается в преобразовании тепловой энергии сгоревшего топлива в механическую. Для этого в камеру сгорания поступает горючая смесь, состоящая из топлива и воздуха, а затем воспламеняется. Оптимальное соотношение компонентов обеспечивает получение максимальных динамических характеристик. За забор и впуск воздуха в цилиндры двигателя отвечает соответствующая система питания.

Основные системы наддува

Назначение воздухозаборника и особенности системы подачи воздуха в двигатель

Независимо от конструкции, воздух в двигатель попадает из атмосферы. Это актуально как для бензиновых, так и дизельных модификаций. В общем случае в схему входят:

  • воздухозаборник;
  • фильтр;
  • впускной патрубок;
  • турбокомпрессор;
  • дроссельная заслонка (для бензиновых двигателей);
  • промежуточный радиатор;
  • впускной коллектор.

Турбокомпрессором (турбиной) оснащают дизельные моторы, но принудительным наддувом оборудуют также и работающие на бензине. Наддув позволяет силовому агрегату развить более высокую мощность за счёт генерации большего давления.

Система подачи воздуха на бензиновых двигателях

Назначение воздухозаборника и особенности системы подачи воздуха в двигатель

Конструкция систем питания воздухом моторов любых моделей принципиальных отличий не имеет. Первый элемент — воздухозаборник, компонент двигателя, который отвечает за сообщение с атмосферой. Его устанавливают под капотом так, чтобы эффективно забирать воздушные массы на всех скоростных режимах. Раструб воздухозаборника закреплён корпусом головной оптики с правой или с левой стороны авто, около радиаторной решётки.

После попадания в заборник поток движется в фильтр. Это обязательный компонент воздушной системы двигателя, отвечающий за очистку потока от пыли. Если мельчайшие частицы из атмосферы будут беспрепятственно поступать в ДВС, начнётся интенсивный износ стенок цилиндров, что приведёт к поломке мотора. Фильтр очистки поступающего воздуха включает фильтрующий элемент и корпус. Устанавливают его в подкапотном пространстве недалеко от воздухозаборника, к корпусу авто крепят через резиновые демпферы.

Миновав фильтр, воздушный поток попадает во впускной патрубок. Это соединительная труба, предназначенная для дистанцирования элементов системы. В нижней части патрубка делают «ловушку» для воды. Это небольшое углубление, куда стекает жидкость, попавшая в устройство для подачи воздуха после преодоления глубоких луж.

В корпусе фильтра или во впускном патрубке устанавливают датчик, измеряющий скорость движения воздушных масс.

Регулирует обороты коленвала дроссельная заслонка. Механизм напрямую связан с педалью акселератора, при нажатии на которую увеличивается воздушный поток. В корпусе дросселя расположен регулятор холостых оборотов и датчик положения заслонки. Первый отвечает за поддержание минимального вращения коленвала, второй — передаёт информацию блоку управления о степени открытия механизма.

После дроссельной заслонки поток попадает во впускной коллектор. Это последняя деталь в схеме на пути подачи воздуха в цилиндры. Делают его из металла (сплава на основе алюминия) или пластика. Коллектор отвечает за формирование горючей смеси, которая в дальнейшем попадает в камеру сгорания. Впрыск горючего осуществляют инжекторы, установленные непосредственно в корпусе детали.

Система подачи воздуха в дизельный двигатель

Назначение воздухозаборника и особенности системы подачи воздуха в двигатель

Компоновка мотора, работающего на солярке, от бензинового практически не отличается. В схеме питания отсутствует дроссельная заслонка, установлен турбокомпрессор и реализован более сложный принцип формирования топливной смеси. В двигатель с дизельной аппаратурой и турбиной воздушный поток попадает через заборник, который представляет собой полный аналог элемента бензинового мотора. Очистка воздушной массы также происходит в фильтре. Однако для силовых агрегатов, устанавливаемых на спецтехнику, предусмотрена многоступенчатая фильтрация. В условиях сильной запылённости используют инерционный предварительный очиститель и другие подобные решения.

После фильтра воздушные массы попадают в центробежный нагнетатель. Турбина работает за счёт энергии отработанных газов и предназначена для генерации большего крутящего момента. Поток, проходя через нагнетатель, нагревается. Для его охлаждения предусмотрен промежуточный теплообменник — интеркулер. Элемент позволяет незначительно повысить мощность ДВС по сравнению с базовыми характеристиками.

Последний элемент системы — коллектор. В отличие от бензинового, в дизельном нет дроссельного узла, а воздух беспрепятственно попадает в цилиндры. Генерация крутящего момента регулируется количеством впрыскиваемого топлива. Однако в современных моторах заслонка всё же есть, но выполняет она другую функцию. Совместно с клапаном EGR она способна улучшить экологические показатели мотора на переходных режимах работы. Снижение токсичности выхлопных газов происходит за счёт повторного их использования при формировании горючей смеси.

Система регенерации выхлопных газов позволяет снизить их токсичность, но в то же время существенно сокращает ресурс силового агрегата. Моторы, оснащённые этой технологией, работают в 4-5 раз меньше до капитального ремонта.

Как увеличить подачу воздуха в двигатель

От количества и качества поступающих в мотор воздушных масс зависят его эксплуатационные характеристики. Для генерации большей мощности владельцы авто пытаются увеличить подачу воздуха. Для этого в конструкцию силового агрегата вносят изменения. Установка модернизированной системы питания позволяет получить несколько дополнительных лошадиных сил.

Наиболее простой и бюджетный способ — установка фильтра нулевого сопротивления взамен штатного. Однако этот метод используют на спортивных и специально подготовленных авто. Для стоковых двигателей прирост мощности будет минимален, а расходы на более частую замену фильтрующего элемента существенно возрастут.

Часто повышают крутящий момент за счёт доработки штатной системы подачи воздуха. Способ подразумевает комплексный подход к модернизации. В первую очередь измеряют местные сопротивления движению потока, затем меняют конфигурацию воздухозаборника, корпуса фильтра, впускного патрубка так, чтобы движению воздуха ничего не мешало.

Читайте также  Как заменить двигатель автомобиля

Существенно повысить «резвость» атмосферного мотора позволяет электрический нагнетатель. Монтаж турбины осуществляют во впускной патрубок. В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.

Увеличить поступление воздушных масс позволяет вынос воздухозаборника из подкапотного пространства. «Холодный впуск» обеспечивает снижение температуры в коллекторе, а также незначительное повышение давления во время движения. Однако вынос воздухозаборника сопряжён с риском попадания в него воды, что может привести к гидроудару и поломке двигателя.

Система питания двигателя — сложный компонент, исправность которого обеспечивает нормальное функционирование силового агрегата. Для улучшения динамических характеристик возможен тюнинг отдельных элементов, отвечающих за подачу воздуха в цилиндры.

Наддув двигателей внутреннего сгорания, турбонаддув

Наддувом — называют принудительную подачу воздуха под давлением выше атмосферного. Если речь идет о наддуве двигателя внутреннего сгорания, то при наддуве сжатый воздух подается компрессором из атмосферы в полость цилиндра.

Двигатель с турбонаддувом

Схемы наддува

Для обеспечения наддува необходим компрессор, который должен сжимать воздух и нагнетать его в двигатель. Для работы необходимо вращать вал компрессора. Для привода компрессора можно использовать разные схемы.

Приводной нагнетатель — Komoressor

Схема наддува с компрессором

Вращать вал компрессора можно с помощью коленвала, установив дополнительную зубчатую или ременную передачу. Такую схему подачи воздуха называют наддувом с приводным нагнетателем. При вращении вала будет вращаться компрессорное колесо, которое будет нагнетать воздух во впускной коллектор двигателя. Иногда на автомобилях оснащенных подобной системой наддува наносят надпись — компрессор (Kompressor). Это простая, но далеко не самая экономичная схема.

Трубонаддув

Схема подключения турбонаддува к двигателю внутреннего сгорания

Для вращения вала компрессора можно использовать энергию отработавших газов, добавив в систему турбины. Выхлопные газы будут вращать турбинное колесо, установленное ка одном валу с компрессорным колесом. Компрессор, в свою очередь будет сжимать воздух и подавать его в двигатель. Такая схема называется турбонаддувом. По сравнению с приводным нагнетателем турбонаддув обладает большей задержкой, так как связь между двигателем и системой наддува не жесткая.

Как работает турбонаддув?

Смесь воздуха и топлива поступает в цилиндр двигателя, смесь сжимается при движении поршня вверх, затем она воспламеняется, из-за расширения газов, поршень вытесняется вниз. Двигаясь он вращает коленвал. Затем при движении воздуха вверх, через открывшиеся клапаны отработанные газы поступают в выходной коллектор.

Устройство турбонаддува

Поток газов имеет некоторую остаточную энергию достаточную для вращения рабочего колеса турбины. Частицы газа воздействуют на лопатки турбинного колеса, заставляя его вращаться. Турбинное и компрессорное колесо установлены на одном валу. При вращении турбины вращается и компрессор. В компрессоре лопатки рабочего колес воздействуют на воздух, попадающий из атмосферы. В результате этого воздействия частицы воздуха начинают вращаться вместе с колесом. При высокой скорости вращения частицы воздуха будут отбрасываться к периметру колеса в спиральный отвод и принудительно нагнетаться в во впускной коллектор, а затем и в полость цилиндра.

Комбинированные схемы

Сжатие воздуха может быть не одноступенчатым, а двухступенчатым. Причем рабочее колесо компрессора приводится во вращение турбиной, а для привода второй ступени используется механическая передача, соединенная с коленвалом. Такая схема позволяет сочетать достоинства приводного нагнетателя и турбонаддува, и делает работ у двигателя более приемистой. Однако недостаток приводного нагнетателя в виде плохой экономичности также никуда не пропадает.

Схема наддува с двухступенчатым компрессором

На на одних режимах работы мощность турбонаддува может быть недостаточна, на других — избыточна. Чтобы избавиться от этого недостатка, между турбиной и двигателем вводят дополнительную механическую связь. Через механическую или гидравлическую передачу. Это позволяет наиболее эффективно использовать мощность, но конструкция при этом сильно усложняется и удорожается, поэтому широкого применения эта схема не получила.

Турбонаддув с механической связью

Двухступенчатым может быть не только компрессор, но и турбина. Вторая ступень может использовать для привода во вращение вентиляторов и других вспомогательных устройств, или быть соединена с коленвалом.

Схема наддува с двухступенчатой турбиной

Дизель-турбина

На некоторых режимах работы турбина может развивать мощность достаточную для ее применения в качестве первичного двигателя.

Схема дизель-турбины

В этом случае двигатель и компрессор связывают механически, а между двигателем и турбиной осуществляется газовая связь. Подобный агрегат называют дизель-турбиной. Такая схема эффективна при очень высоких температурах отработанных газов. Для обеспечения надежности работы турбины рабочую температуру приходится снижать, что негативно сказывается на КПД агрегата.

Охлаждение при наддуве, для чего нужен интеркулер?

В процессе сжатия воздух нагревается, теплый воздух имеет меньшую плотность чем холодный. Плотный холодный воздух позволит повысить эффективность работы двигателя, поэтому для отвода ненужного тепла, используется интеркулер.

Схема установки интрекуллера в систему турбонаддува

Интеркулер — это теплообменник, который устанавливается между компрессором и впускным коллектором, он позволяет охладить сжатый воздух, переде его поступлением в двигатель.

Регулирование турбонаддува

Мощность наддува на некоторых режимах может быть избыточна, то есть воздух может сжиматься слишком сильно. Поэтому работу наддува нужно регулировать.

Сопротивление в линии нагнетания компрессора для регулировки

Для ограничения подачи компрессора можно установить на его входе или выходе сопротивление, в виде шайбы с отверстием расчетного диаметра. При увеличении расхода через отверстие сопротивление будет расти, что в свою очередь будет затруднять поступление воздуха в компрессор и или выход из него, за счет этого будет ограничиваться подача воздуха в двигатель.

Сопротивление в линии всасывания компрессора

Подобное сопротивление можно установить и перед турбиной. Но установка сопротивления увеличивает потери, что отрицательно скажется на КПД.

Сопротивление, установленное на турбине

Для того, чтобы сбрасывать часть воздуха только при определенном давлении на выходе компрессора можно установить предохранительный клапан. Запорный элемент клапан поджат пружиной, когда усилия от давления воздуха будет достаточно, чтобы сжать пружину клапан откроется и сбросить часть воздуха обратно в атмосферу.

Предохранительный клапан на компрессоре наддува

Перепускной клапан

Вестгейт или перепускной клапан позволяет пустить часть отработанных газов в обход турбины. Запорный элемент клапана поджат пружиной.

Перепускной клапан для регулировки турбонаддува

Давление отработанных газов воздействует на запорный элемент клапана, с другой стороны на него действует усилие пружины. Когда усилие от давления газов будет выше чем усилие пружины, клапан откроется и пропустить часть газов в обход пружины. Это достаточно простая и эффективная схема регулирования, которая применяется на большинстве современных двигателей с турбонаддувом. Однако часть энергии тратится впустую, что снижает КПД. Конечно можно направить поток газа не в выхлопную систему, а на другую турбину, для привода вспомогательных механизмов, но это усложнит конструкцию и сделает ее более дорогой.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button