Двигатель

Рабочая температура электродвигателя

Рабочая температура электродвигателя

Справочник

Нагрев электродвигателей классы изоляции 10.07.2006 17:25

Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие — больше. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.

На табличке электродвигателя со всеми данными указан и параметр, называемый класс изоляции.

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции. По этому, нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально должен составлять 15—20 лет.

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза. alt=»Электродвигатель купить Аросна» width=»180″ height=»130″ />

При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени.

Предельные допустимые превышения температуры активных частей электродвигателей

t 0 (при температуре окружающей среды 40ºС):

  1. Класс E: допустимая температура нагрева до 120°C.
  2. Класс B: допустимая температура нагрева до 130°C.
  3. Класс F: допустимая температура нагрева до 155°C.
  4. Класс H: допустимая температура нагрева до 180°C.

Подробнее о классах нагревостойкости изоляции см Статью Класс нагревостойкости изоляции

В таблице приведены в качестве примера предельно допускаемые превышения температуры для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Температурой окружающего воздуха, при которой общепромышленный электродвигатель может работать с номинальной мощностью, считается 40ºС.

Если температура окружающей среды больше или меньше +40 для общепромышленного исполнения электродвигателя, то стандарт разрешает определенные изменения допустимых превышений температур.

При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается. У асинхронных двигателей на это может влиять изменение напряжения питающей сети, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя и кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов.

При повышении температуры многие из материалов начинают обугливаться и становятся проводниками. Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Опыт показывает, что повышение температуры изоляции на 10 °С сокращает срок ее службы примерно в два раза. Так, для изоляции класса А повышение температуры с 95 до 105 °С сокращает срок ее службы с 15 до 8 лет, а нагрев до 120 °С — до двух лет. В основе этого явления лежит общий закон зависимости скорости химических реакций от температуры, описываемый уравнением Ван-Гоффа-Аре-ниуса.

То есть технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается.

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Электродвигатели купить двигатель электромотор Аросна Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В производственных условиях измерение температуры узлов электрических машин и электроаппаратуры выполняется непосредственно термометром или косвенно на основе измерения их сопротивления.

Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду. Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается. Рост температуры двигателя за­медляется.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада — медленно.

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток. Подробнее Статья Класс нагревостойкости изоляции смотреть

В отдельных точках частей машины температура может быть выше средней. Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые. Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65 ° — для изоляции класса А, 90 °С — для изоляции класса В, ПО и 135 °С — соответственно для изоляции классов F и Н.

Читайте также  Греется двигатель после замены помпы

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С), но важно помнить прежде всего безопасность.

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40 °С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в таблице. При температурах больше 40 С и высоте более 1000 м эти значения должны быть уменьшены в соответствии с ГОСТ (Машины электрические вращающиеся. Общие технические требования). Непосредственные измерения температуры при помощи термометров или термощупов дают надежные результаты, но не позволяют определять температуру внутренних наиболее нагретых частей обмотки. На основе измерения омического сопротивления обмотки можно определить только некоторое среднее значение ее температуры. Поэтому нормы предельно допустимой температуры обмоток указываются с учетом метода ее измерения.

Контроль нагрева

Чрезмерный нагрев электродвигателей сокращает срок их службы. Степень нагрева зависит от нагрузки электродвигателя и от условий и режима его работы.

Под нагрузкой электродвигателя обычно понимают значение момента сопротивления на валу или значение пропорциональной ему величины — тока статора. Поскольку измерить момент двигателя в процессе его работы затруднительно, для контроля нагрузки измеряют ток статора и сравнивают его с допустимым значением.

Электроизоляционные материалы подразделяются на классы нагревостойкости, для которых определена наибольшая допустимая температура при использовании их в электрооборудовании общего применения, длительно работающего в нормальных эксплуатационных условиях.

Так, для класса нагревостойкости V наибольшей допустимой рабочей температурой является 90 С. К этому классу относятся непропитанные и непогруженные в жидкий электроизоляционный состав волокнистые материалы из шелка и целлюлозы. Для класса нагревостойкости А наибольшей допустимой рабочей температурой является 105°С. К классу А относятся те же волокнистые диэлектрики, но пропитанные или погруженные в жидкий диэлектрик, а также некоторые полиамидные пленки и смолы, древесные пластики, изоляция эмаль-проводов на масляно-смоляных лаках и т. д. Для класса Е наибольшей допустимой рабочей температурой является 120 °С. К этому классу относятся пластмассы, синтетические органические пленки, компаунды на основе эпоксидных и других смол. Для класса В допустимая рабочая температура равна 130°С. К этому классу относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с органическими связующими и пропитывающими составами.

Для класса F максимальная рабочая температура равна 155°С. К классу F относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами (лаки, компаунды). Для класса Н максимальной рабочей температурой является 180 °С. К классу Н относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими составами, кремнийоргапические эластомеры. Для класса С максимальная рабочая температура допускается свыше 180°С. К этому классу относятся слюда, кремнийорганические материалы, стекло, кварц.

Технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается.

Точные значения допустимых температур нагрева обмоток и стали для различного типа машин при продолжительном их работе с номинальной нагрузкой устанавливаются по результатам эксплуатационных испытаний и указываются в производственных инструкциях. В большинстве случаев они не превышают 100—120 С для обмоток статоров и 105 —140 С для обмоток роторов электродвигателей.

Допустимый перегрев зависит от класса изоляции. Например, для изоляции класса А допускается превышение температуры над окружающей не более 60 С для обмоток и околооб-моточной части стали электрических машин, для изоляции класса В — не более 80°С. Так, при температуре воздуха 30°С допустимая температура статора электродвигателя с изоляцией класса А составит 90°С, а для класса В — 110 С.

Для изоляции классов А и В применяется так называемое десятиградусное правило: при превышении температуры обмоток примерно на каждые 10 °С срок службы изоляции уменьшается вдвое. Перегрев машины чаще всего происходит за счет ее перегрузки электрическим током. При превышении номинальной нагрузки необходимо снизить ее до номинальной и проследить за изменением температуры нагрева. Таким образом, задача обслуживающего персонала состоит в том, чтобы не допускать перегрузок электрических машин.

Для контроля за нагрузкой электродвигателей в одну из фаз питающей линии устанавливают амперметр, который должен показывать ток обмотки статора. На делении его шкалы, соответствующем 105% номинального тока, делают четкую отметку красного цвета, облегчающую контроль. Продолжительная работа электродвигателя при показаниях амперметра, превышающих 105% номинального тока, недопустима по условию нагрева. В этом случае необходимо понизить температуру окружающей среды (например, усилением вентиляции помещения) или уменьшить нагрузку на валу двигателя.

Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С).

Заметное влияние на нагрев электродвигателей имеет уровень напряжения питающей сети. Существенно, что увеличение и уменьшение напряжения ведут к повышению температуры нагрева электродвигателя. В связи с этим не допускаются напряжения ниже 95 % и выше 110% номинального. Наилучшие характеристики асинхронные электродвигатели имеют при напряжениях в диапазоне от 100% до 105% номинального. В этих пределах и следует поддерживать напряжение сети, питающей асинхронные электродвигатели. По условиям пуска предпочтительна верхняя граница диапазона, т. е. 1,05 Vн.

Читайте также  Электродвигатель постоянного тока для электромобилей

Нагрев и режимы работы электродвигателей

Во время работы электродвигателя часть электриче­ской энергии преобразуется в термическую. Это связано с энергопотерями на трение в подшипниках, на вихревые токи и перемагничивание в стали статора и ротора, а так­же в активных сопротивлениях обмоток статора и ротора.
Энергопотери в обмотках статора и ротора про­порциональны квадрату величины их токов. Ток статора и ротора пропорционален
нагрузке на валу. Другие утраты в двигателе почти не зависят от нагрузки.
При постоянной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени. Увеличение температуры мотора происходит неравномерно. Сначала она растет стремительно: практически вся теплота идет на увеличение температуры и только маленькое количество ее уходит в окружающую среду. Пе­репад температур (разница меж температурой дви­гателя и температурой окружающего воздуха) еще пока невелик. Но по мере роста температуры дви­гателя перепад растет и теплопотеря в окружающую среду возрастает. Рост температуры мотора за­медляется. Температура мотора прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура мотора именуется установившейся.
Величина установившейся температуры мотора за­висит от нагрузки на его валу. При большой нагрузке выделяется огромное количество теплоты в единицу вре­мени, означает, выше установившаяся температура двига­теля.
После отключения движок охлаждается. Темпера­тура его сначала снижается стремительно, потому что перепад ее большой, а потом по мере уменьшения перепада – медлительно.

Рис. 1. Нагрев и остывание движков: о — длительного режима работы; б — повторно-кратковременного; в — краткосрочного

Величина допустимой установившейся температуры мотора обусловливается качествами изоляции обмо­ток.
Практически у всех движков общего внедрения для изоляции обмотки употребляются эмали, синтетические пленки, пропитанные картоны, хлопчатобумажная пря­жа. Максимально допустимая температура нагрева этих материалов 105С. Температура обмотки мотора при номинальной нагрузке должна быть на 20…25 °С ниже максимально допустимой величины.
Существенно более низкая температура мотора соответствует работе его с малой нагрузкой на валу. При всем этом коэффициент полезного деяния мотора и коэффициент его мощности невелики.
Режимы работы электродвигателей.

Различают три главных режима работы движков: длительный, повторно-кратковременный и краткосрочный. Продол­жительным именуется режим работы мотора при по­стоянной нагрузке длительностью более, чем нужно для заслуги установившейся температу­ры при постоянной температуре окружающего воздуха. Повторно-кратковременным именуется таковой режим работы, при котором краткосрочная постоянная на­грузка чередуется с отключениями мотора, при этом во время нагрузки температура мотора не добивается установившегося значения, а во время паузы движок не успевает охладиться до температуры окружающего воздуха. Краткосрочным именуется таковой режим, при котором за время нагрузки мотора температура его не добивается установившегося значения, а за время паузы успевает охладиться до температуры окружаю­щего воздуха.
На рис. 1 изображены кривые нагрева и охлажде­ния мотора и подводимые мощности Р для 3-х ре­жимов работы. Для длительного режима работы изображены три кривые нагрева и остывания 1, 2, 3(рис. 1, а), надлежащие трем разным нагруз­кам на его валу. Кривая 3 соответствует большей нагрузке на валу; при всем этом подводимая мощность P3>P2>Pi- При повторно-кратковременном режиме мотора (рис. 1, б) температура его за время нагрузки не добивается установившейся. Температура дви­гателя повышалась бы по пунктирной кривой, если б время нагрузки было более долгим. Продолжитель­ность включения мотора ограничивается 15, 25, 40 и 60% времени цикла. Длительность 1-го цикла tц принимается равной 10 мин и определяется суммой времени нагрузки N и времени паузы R, т. е.
tц = N + R
Для повторно-кратковременного режима работы вы­пускаются движки с длительностью работы ПВ 15, 25, 40 и 60% ПВ = N : (N + R) * 100%
На рис. 1, в изображены кривые нагрева и охлаж­дения мотора при краткосрочном режиме работы. Для этого режима изготовляются движки с длитель­ностью периода постоянной номинальной нагрузки 15, 30, 60, 90 мин.

Теплоемкость мотора – величина значимая, потому нагрев его до установившейся температуры может длиться несколько часов. Движок кратко­временного режима за время нагрузки не успевает на­греться до установившейся температуры, потому он работает с большей нагрузкой на валу и большей под­водимой мощностью, чем таковой же движок продол­жительного режима работы. Движок повторно-крат­ковременного режима работы также работает с большей нагрузкой на валу, чем таковой же движок продолжи­тельного режима работы. Чем меньше продолжитель­ность включения мотора, тем больше допустимая нагрузка на его валу.
Для большинства машин (компрессоры, вентилято­ры, картофелечистки и др.) используются асинхрон­ные движки общего внедрения длительного режима работы. Для подъемников, кранов, кассовых аппаратов используются движки повторно-кратковре­менного режима работы. Движки краткосрочного режима работы употребляются для машин, применяёмых во время ремонтных работ, к примеру электронных талей и кранов.

ТЕМПЕРАТУРА ЭЛЕКТРОДВИГАТЕЛЯ. ЗАВИСИМОСТИ ТЕМПЕРАТУРЫ ЭЛЕКТРОДВИГАТЕЛЯ ОТ КЛАССА ИЗОЛЯЦИИ.

Температура электродвигателя.
Температура электродвигателя влияет на срок его службы и является точной индикацией состояния двигателя во время эксплуатации. Если температура электродвигателя на 10°C превышает предельно допустимые значения для определённого класса нагревостойкости изоляции, например, 155°C для электродвигателей класса F, то срок службы изоляции может сократиться на 50%. Класс нагревостойкости изоляции всегда указывается в фирменной табличке.

В таблице представлены два наиболее распространённых класса нагревостойкости изоляции: B и F.

Класс Изоляция Поверхность Подшипник
изоляции температура ( °С ) температура ( °С )

температура ( °С )
B 130 60-90 60-90
F 155 80-120 70-120

Изоляция каждого класса нагревостойкости должна выдерживать температуру, равную максимальной температуре окружающей среды плюс некоторое повышение температуры в условиях эксплуатации с максимальной нагрузкой.

Контроль температуры подшипников.
Контроль температуры подшипников также может быть частью процесса профилактического технического обслуживания. Повышение температуры подшипников с консистентной смазкой не должно превышать 60°C (на внешней крышке подшипника).

∆T подшипника = 60 K
Температура окружающей среды = 40°C
Абсолютная температура подшипника = ∆T + температура окружающей среды
60 K + 40°C = 100°C

Абсолютная температура подшипника НЕ ДОЛЖНА превышать 100°C.
Температуру подшипников электродвигателя можно постоянно контролировать с помощью внешних термометров или встроенных термодатчиков. Предельную температуру и температуру отключения для шарикоподшипников можно задать на 90°C – 100°C.

Общая информация по электродвигателям

Электродвигатель АИР является ключевым звеном в механизме, обеспечивая его работоспособность. От того, какие характеристики предлагает двигатель, так будут действовать и все устройство в целом. Электродвигатели охватывают все сферы человеческой деятельности, в первую очередь, широко востребованы в промышленности.

Синхронный электродвигатель представляет собой устройство переменного тока. Частота вращения магнитного поля, которое создает якорь, равна частоте вращения ротора.

Асинхронный электродвигатель АИР представляет собой устройство, работающее за счет переменного тока, преобразуя электрическую энергию в механическую. В этом устройстве частота вращения ротора не равна частоте вращения магнитного поля. Бесперебойная и надежная работа асинхронного двигателя обеспечивается соблюдением необходимых условий: высота над уровнем моря, на которой работает двигатель, не должна превышать 1000 м; температура окружающей среды варьируется от -40 до +40 С; относительная влажность воздуха не должна превышать 90% (при температуре +25 С), запыленность воздуха для закрытых двигателей менее 10 мг/м3, 2 мг/м3 — для защищенных.

Для нестандартных условий производятся двигатели особого исполнения.

Взрывозащищенные асинхронные электродвигатели исключают возможность взрыва за счет заключения элементов двигателя, напрямую взаимодействующих с электричеством, в взрывонепроницаемую оболочку. Такая оболочка выдерживает давление взрыва внутри, не давая ему выйти в окружающую среду.

Общая схема маркировки электродвигателей

1. Обозначение серии:

АИР, А, 4А, 5А, АД, 7AVER — общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000

АИС, 6А, IMM, RA, AIS — общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)

АИМ, АИМЛ, ВА, АВ, ВАО2, 1ВАО, 3В — взрывозащищенные электродвигатели

АИУ, ВРП, АВР, 3АВР, ВР — взрывозащищенные рудничные электродвигатели

А4, ДАЗО4, АОМ, ДАВ, АО4 — высоковольтные электродвигатели

2. Признак модификации:

М- модернизированный электродвигатель (например: АДМ63А2У3)

К- электродвигатель с фазным ротором (например: 5 АНК280А6)

Х- электродвигатель с алюминиевой станиной (например: 5АМХ180М2У3)

Е- однофазный электродвигатель 220В (например: АИРЕ80С2У3)

Н- электродвигатель защищенного исполнения с самовентиляцией (например: 5АН200М2У3)

Ф- электродвигатель защищенного исполнения с принудительным охлаждением

С- электродвигатель с повышенным скольжением (например: АИРС180М4У3)

В- встраиваемый электродвигатель (например: АДМВ63В2У3)

Р- электродвигатель с повышенным пусковым моментом (например: АИРР180S4У3)

П- электродвигатель для привода вентилятора в птицеводческих хозяйствах («птичник»)

3. Габарит (высота оси вращения вала над установочной поверхностью) мм.:

50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400

4. Установочные размеры или длина сердечника:

А, В — вариант длины сердечника

S, M, L — вариант длины сердечника и установочных размеров по длине станины

X, XK, Y, YK — вариант длины сердечника статора высоковольтных двигателей

5. Число полюсов:

2 (3000 об/мин), 4 (1500 об/мин), 6 (1000 об/мин), 8 (750 об/мин), 10 (600 об/мин), 12 (500 об/мин)

4/2, 6/4, 8/6, 12/4, 12/6, 6/4/2, 8/6/4 и т.д. — многоскоростные электродвигатели

6. Признак конструктивной модификации:

Б — электродвигатель со встроенным датчиком температурной защиты обмотки

Б1 — электродвигатель с датчиком температурной защиты обмотки и подшипниковых узлов

Б2 — электродвигатель с датчиком температурной защиты обмотки и подогревателем

Е — электродвигатель со встроенным электромагнитным тормозом (например: АИР80А2ЕУ3)

Е2 — электродвигатель со встроенным тормозом и ручкой расторможения

П — электродвигатель с повышенной точностью по установочным размерам

Ж — электтродвигатель для привода моноблочных насосов (например: АИР80А2ЖУ2)

Н — малошумный электродвигатель (например: 5АН180S4/16НЛБУХЛ4)

Л — электродвигатель для привода лифтов (например: 5АН180S4/16НЛБУХЛ4)

С — электродвигатель для привода нефтяных станков-качалок (например: АИР180S4СНУ1)

Тр — электродвигатель для осевых вентиляторов в системах охлаждения трансформаторов

Р3 — электродвигатель для мотор-редукторов

7. Климатическое исполнение (ГОСТ 15150-69)

У — для макроклиматического района с умеренным климатом

УХЛ — для макроклиматических районов с умеренным и холодным климатом

ХЛ — для макроклиматического района с холодным климатом

Т — для макроклиматических районов как с сухим, так и с влажным тропическим климатом

М — для макроклиматического района района с умеренно-холодным морским климатом

О — для всех макроклиматических районов на суше, кроме очень холодного (общеклиматическое исполнение)

В — для всех макроклиматических районов на суше и на море, кроме очень холодного (всеклиматическое исполнение)

8. Категории размещения (ГОСТ 15150-69)

1- для эксплуатации на открытом воздухе

2- для эксплуатации под навесом, в палатках, кузовных прицепах

3— для эксплуатации в помещениях без регулируемых климатических условий

4— для эксплуатации в помещениях с искусственно регулируемыми климатическими условиями

5— для эксплуатации в помещениях с повышенной влажностью

Допустимые значения рабочих температур для основных климатических исполнений

Климатическое исполнение Категории размещения Значение температуры воздуха при эксплуатации, С
Рабочее Предельное рабочее
верхнее нижнее верхнее нижнее
У, ТУ 1,2,3 +40 -45 +45 -45
5 +35 -5 +35 -5
УХЛ 1,2,3 +40 -60 +45 -70
5 +35 -10 +35 -10
Т,ТС 1,2,3 +50 -10 +60 -10
5 +35 +1 +35 +1

Рабочие значения влажности воздуха для основных климатических исполнений

Монтажное исполнение IMxxxx

Монтажное исполнение электродвигателя АИР обозначается латинскими буквами IM и четырьмя цифрами после них. Также иногда встречается обозначение по международному стандарту МЭК60034-7 (код I), включающее латинские буквы IM, латинскую букву В или V и от 1 до 2 цифр.

Первая цифра — конструктивное исполнение электродвигателя

1— электродвигатель на лапах с подшипниковыми щитами

2— электродвигатель на лапах с подшипниковыми щитами и фланцем на одном щите

3— электродвигатель без лап с подшипниковыми щитами и фланцем на одном щите

Вторая и третья цифра — пространственный способ монтажа электродвигателя. Если третья цифра «8», например IM1081, то такой электродвигатель может монтироваться в любом положении.

Четвертая цифра — исполнение конца вала

1— электродвигатель с одним цилиндрическим концом вала

2— электродвигатель с двумя цилиндрическими концами вала

3— электродвигатель с одним коническим концом вала

4— электродвигатель с двумя коническими концами вала

Степень защиты IPxx (ГОСТ 17494-87)

Первая цифра — защита от проникновения твердых тел

0— незащищенный электродвигатель

1— электродвигатель, защищенный от твердых тел, диаметром более 50 мм

2— электродвигатель, защищенный от твердых тел, диаметром более 12 мм

3— электродвигатель, защищенный от твердых тел, диаметром более 2,5 мм

4— электродвигатель, защищенный от твердых тел, диаметром более 1,0 мм

5— электродвигатель, защищенный от пыли

Вторая цифра — защита от проникновения воды

0— незащищенный электродвигатель

1- электродвигатель, защищенный от вертикально капающей воды

2— электродвигатель, защищенный от падающих капель под углом до 15º к вертикали

3— электродвигатель, защищенный от падающих капель под углом до 60º к вертикали (от дождя)

4— электродвигатель, защищенный от воды, разбрызгиваемой со всех направлений

5- электродвигатель, защищенный от водяных струй со всех направлений.

Класс нагревостойкости изоляции

Электродвигатели, как правило, имеют класс нагревостойкости изоляция «В» (температурный индекс 135ºС), «F» (температурный индекс 155ºС) или «Н» (температурный индекс 180ºС) по ГОСТ 8865-70.

Класс нагревостойкости изоляции отражает максимальную рабочую температуру изоляции обмотки статора или ротора электродвигателя при номинальной нагрузке.

Номинальный режим работы электродвигателя

Определяет допустимую частоту и продолжительность включений электродвигателя, а также устанавливающийся при этих включениях температурный режим. ГОСТ 183-74 (МЭК 60034-1).

Напряжение и частота

При частоте тока 50Гц:

380, 660, 220/380, 380/660, 400/690 В

При частоте тока 60Гц:

440, 460, 240/415, 415/720 В

Также возможны иные значения частоты и напряжения, выполненные под заказ потребителя.

Для напряжений указанных через дробь справедлива схема соединения обмотки статора треугольник/звезда.

Схема подключения электродвигателей

Номинальные данные приводятся в соответствии с ГОСТ28173-89.

Электродвигатели АИР, расчитанные на напряжение 220/380В, должны подключаться при соединении обмоток в «звезду»на линейное напряжение 380В, а при соединении обмоток в «треугольник» на линейное напряжение 220В.

Аналогично, электродвигатели АИР, рассчитанные на напряжение 380/660В, должны подключаться при соединении обмоток в «звезду» на линейное напряжение 660В, а при соединении обмоток в «треугольник» на линейное напряжение 380В.

У электродвигателей, рассчитанных на напряжение 380В, обмотки по умолчанию соединены в «звезду» на линейное напряжение 380В.

Иное подключение обмоток приведет к выходу электродвигателя из строя и отказу завода-изготовителя от гарантийных обязательств по причине наличия «вины потребителя».

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button