Двигатель

На что влияет объем двигателя

На что влияет объем двигателя

Как расход топлива зависит от объема двигателя автомобиля?

Сегодня многих автолюбителей по всему миру интересует вопрос взаимосвязи расхода топлива и объема двигателя, так как издавна принято считать, что больший объем камер цилиндров, например моторов с 2.0-мя и более литрами должны потреблять заметно больше горючего, чем малолитражные моторы. Самое интересно, что такая зависимость не всегда оправдывается, порой силовая установка с объемом в 1.5 литра может потреблять топлива меньше, чем двигатель с 2.0 литрами.

Практически у любого водителя при покупке определенной модели автомобиля, в голове рисуется логическая формула, что имея большой объем мотора, двигатель будет больше в себя засасывать солярки или бензина, следовательно расход машины малым быть не может в принципе. Но жизненная практика с такой теорий оказывается не согласной. Почему так происходит? Для того, чтобы ответить на этот вопрос, необходимо рассмотреть простой пример. Для этого возьмем новый автомобиль Мазда 6 с двигателем разработанным по технологии Skyactiv с объемом в 2.0 литра работающим в паре с механической коробкой передач. Расход такого мотора с смешанном режиме составляет около 7,5 литров на сотню.

А теперь возьмем менее мощный отечественный автомобиль, например Лада Гранта с объемом в 1.5 литра с механической трансмиссией. Дек вот расход Лады в смешанном режиме, исходя из технической документации будет равен 8,5 литрам на 100 километров пробега. Как видим логика в итоговых значениях не прослеживается. А все потому, что расход топлива зависит не только от объема двигателя, но и от ряда факторов, которые прямо или косвенной влияют на итоговый показатель. Эти факторы мы и рассмотрим в нашей статье.

КЛЮЧЕВЫЕ ФАКТОРЫ, КОТОРЫЕ ВЛИЯЮТ НА РАСХОД ТОПЛИВА

1. Технологии в автомобилестроении: являются первым фактором, который напрямую влияет и оказывает сильное воздействие на расход топлива двигателем. Как можем видеть с каждым годом, автомобили достаточно быстро эволюционируют, что особенно сказывается на технологичности силовых установок. Моторы из года в год становятся все мощнее, но при этом экономичней. Однако, как такое может быть? Все благодаря новым технологиям, которые дают возможность увеличивать отдачу двигателя и при этом сокращать расход топлива с выбросами отработанных газов. Ярким примером технологичности моторов является плавный переход автопроизводителей с 8-ми клапанных агрегатов на 16-ти клапанные, в которых система впрыска топлива работает значительно быстрей и следовательно эффективней, чем у собрата.

Кроме того, значительное влияние на экономию топлива оказывает переход производителей от карбюраторных моторов к инжекторным. Достоинства инжектора заключаются в том, что система никогда не перельет сверх меры топливо и следовательно не зальет свечи зажигания, в отличие от карбюратора. Также стоит отдать должное инновационным системам впрыска, например многоточечного типа, которая равномерно и в нужном объеме подает топливо в камеры цилиндров двс. Таким образом, благодаря технологиям, автовладельцы получают много объема и мощности, при сравнительно небольшом расходе топлива.

2. Прошивка двигателя: является специальным программным обеспечением, которое устанавливается на инжекторные двигатели. Благодаря изменению настроек, которые закладываются в электронный блок управления двигателя, автовладелец на выходе получает экономичный автомобиль. Справочно заметим, что прошивка двигателя может быть, как заводской, так и сторонней. По мнению автомехаников, зачастую сторонняя прошивка, желательно последней версии, считается более эффективной, в плане экономии топлива, чем заводская. При использовании экономичной прошивки, силовая установка незначительно теряет в мощности, но при этом экономит на бензине или солярке до 10-15 процентов. В том случае, если установить мощностную прошивку двигателя, то произойдет обратная ситуация, отдача мотора вырастет, а расход увеличится.

3. Манера езды водителя: влияет на расход топлива не меньше, чем вышеописанные факторы. Данный пункт говорит о том, что если водитель хочет сэкономить на топливе, то он будет ездить спокойно и не превысит во время езды 3 тысяч оборотов минуту. Справочно заметим, что стиль езды способен увеличивать средний расход топлива на 20-30 процентов от эталонных значений, которые указываются в технической документации на транспортное средство. Поэтому даже, если автомобиль обладает силовой установкой в 1.4 литра, то это не дает никакой гарантии, что он будет экономичным, так как при агрессивном стиле вождения, средний расход топлива с эталонных 6,5-7 литров может запросто вырасти до 9-10 литров на сотню.

4. Техническая исправность: этот тот фактор, который косвенно влияет на расход топлива, причем чем хуже будет состояние автомобиля в техническом плане, тем выше выйдет итоговое значение по расходу. Техническое состояние автомобиля — это в первую очередь своевременная замена расходных деталей таких, как воздушный фильтр двигателя, топливный и масляный фильтры. Кроме того, на состояние систем транспортного средства влияют моменты, касающиеся того, как часто чистится топливная рампа, форсунки и прочие компоненты топливной системы.

Самым простым способом прочистки систем двигателя служат специальные присадки, причем, чтобы вернуть мотор в первозданное состояние, достаточно в профилактических целях хотя бы 1 раз в год заливать автохимию (справочно: топливные присадки заливаются в бензобак напрямую через горловину; присадки двигателя заливаются в моторное масло через горловину силовой установки). Таким образом, автомобиль с объемом двигателя в 1.6 литра, который не обслуживается должным образом может расходовать топлива больше, чем мотор с 2-мя литрами, в котором своевременно обновляются расходные детали. Поэтому, если мы не хотим повышенного расхода, то следить за фильтрами нужно в первую очередь.

5. Тип коробки передач: является не менее важным критерием, который напрямую влияет на расход топлива. В этом пункте все предельно ясно, если машина оснащена механической трансмиссией или инновационным автоматом, на примере робота DSG с 6-ю и более передачами, то они будут значительно экономичней, нежели вариатор и классический автомат с гидротрансформатором. Кроме того, стоит учитывать тот факт, что чем больше в автомате передач, тем экономичней будет трансмиссия. Кстати, мы забыли сказать о сравнении вариатора и классического автомата. Дек вот вариатор в плане экономичности выглядит получше, но хуже механики и робота.

А теперь давайте рассмотрим интересный нюанс с объемом двигателя и типом трансмиссии. Дек вот, если взять автомобиль с мотором на 1.4 литра, который оснащен автоматом прошлого поколения с 4-мя передачами и современное транспортное средство с двигателем в 2.0 литра и также с автоматом, но уже с 6-ю передачами, то самое интересно то, что вторая машина имея даже более мощный мотор будет экономичней первой. Таким образом, тип трансмиссии, играет ключевую роль в общей картине экономичности современного автомобиля.

6. Наличие турбонагнетателя или компрессора: влияет на итоговое значение расхода топлива не меньше, чем тип трансмиссии. Опять же, чтобы понять, какое влияние оказывает наличие или отсутствие турбины у автомобиля на расход топлива, возьмем для рассмотрения простой пример, который может некоторых водителей удивить. Допустим у нас имеется автомобиль с атмосферным двигателем в 1.4 литра и турбированный мотор в 1.6 литра. Дек вот, что самое интересное, современный мотор с турбиной и рабочим объемом на 1600 кубических сантиметров будет не только экономичней своего собрата на 1.4 литра, он еще будет мощнее, а также более производительней. Таким образом, как видим, турбина или компрессор не всегда негативно влияют на расход топлива, очень многое зависит от технологичности силовой установки и навесного оборудования.

7. Прочие факторы: зачастую включают в себя так называемые признаки ошибочной экономии топлива. Что это значит? Для этого нужно подумать, почему мотор с объемом в 1.4 литра может быть прожорливей, чем двигатели с 1.8 или 2.0 литрами? Все довольно просто, причина заключается в мощности силового агрегата. Например, если мы возьмем два одинаковых автомобиля, но с разными атмосферными силовыми установками (1.4 и 1.6 литра), то получается для того, чтобы достигнуть оптимальных характеристик разгона двигателю с объемом 1.4 литра, нужно работать на более высоких оборотах, следовательно его практически всегда нужно будет раскручивать даже если нужно достигнуть тех же 60 километров в час, иначе машина попросту не будет ехать.

Таким образом, выходит ситуация, что если мы крутим мотор больше, то и расход у нас выйдет выше. Двигатель же с объемом в 1.6 литра является мощнее своего конкурента и чтобы достигнуть 60 километров в час, ему не нужно для этого больших оборотов, потому что такой мотор будет работать в среднем режиме, соответственно и расход топлива будет более умеренным. Как видим, зачастую более мощный мотор оказывается экономичней, менее мощного, так как более сильному двигателю не нужно прилагать чрезмерные усилия на раскрутку.

Читайте также  Как узнать сколько клапанов в двигателе

В заключении отметим, что утверждения касательно экономичности малообъемных двигателей являются большим заблуждением. Зачастую такие показатели, как расход топлива и объем силовой установки автомобиля имеют пропорциональную зависимость, вот поэтому тот же двигатель с объемом в 2.5 литра может быть более экономичным, нежели мотор с 1.6 литрами. Кроме того, не стоит думать, что все турбированные моторы потребляют топлива больше, чем атмосферные установки, так как очень многое зависит от технологичности двигателя и его систем.

Мощность или крутящий момент: что важнее для динамики автомобиля?

Обычно при выборе автомобиля покупатели смотрят на мощность двигателя. Многие считают, что именно эта характеристика наглядно демонстрирует динамичность транспортного средства и его способность быстро разгоняться. Однако это не совсем так. Гонщикам и инженерам гораздо интереснее взглянуть на крутящий момент и на график распределения тяги, благодаря которому можно легко оценить возможности мотора. Бывает, что силовой агрегат с меньшей мощностью показывает более хорошие результаты по динамике. Почему?

Мощность для скорости

Изначально количеством лошадиных сил определялся объем совершаемой работы. При сравнении первых паровых машин оказалось, что в единицу времени они поднимали больше груза из шахты, чем стандартный подъемник, использующий в качестве привода одно животное. Сейчас количество лошадиных сил в моторе, как правило, уже превышает 100. Однако это не значит, что они напрямую сказываются на динамичности и маневренности. Бывает, что машина со 120-сильным мотором едет менее азартно, чем аналогичный автомобиль с силовым агрегатом в 105 л. с. и даже 90 л. с.

При взгляде на график распределения мощности атмосферного двигателя видно, как кривая рвется вверх по пологой траектории и достигает пика при 5500 оборотах. Чтобы достигнуть максимальной мощности, мотор необходимо раскручивать до «красной зоны» и тратить слишком много топлива. Однако в диапазоне наиболее часто используемых оборотов (2000-3000) мотор не так силен, как хотелось бы. Атмосферные агрегаты имеют в этом диапазоне примерно 40% тяги и не могут обеспечить эмоционального подхвата. Сколько ни жми на педаль, а автомобиль едет вяло.

Где же скрывается их максимальная мощность? В возможности транспортного средства достигать максимальной скорости. То есть когда мотор раскрутится до «красной зоны», то он сможет обеспечивать стабильность крейсерской скорости.

Чем мощнее моторы у машины, тем сильнее они расталкивают набегающие потоки воздуха на высоких скоростях. А вот насколько быстро автомобиль достигнет этой максимальной скорости, зависит от другой характеристики мотора, а именно от крутящего момента.

Давить сильнее

Крутящим моментом называется сила, которая умножена на плечо ее приложения. Крутящий момент измеряется в ньютонах, а величина рычага — в метрах и зависит как от мощности, так и от конструкции двигателя. К примеру, в тракторах и грузовиках делается большой кривошип, который служит рычагом для поршня, а вот в легковых автомобилях инженеры стараются обеспечить максимально высокое давление на поршень при маленьком плече.

Благодаря конструктивным новшествам, современным системам газораспределения и изменения фаз, а также из-за турбонаддува и непосредственного впрыска некоторые моторы даже при невысокой мощности показывают выдающиеся показатели крутящего момента. В особенности хороши немецкие двигатели, у которых максимальная тяга достигается уже при 1500 оборотах, что ранее было свойственно в основном только дизельным агрегатам. При мощности в 125 л. с. крутящий момент у них достигает 250 Нм.

Уже с оборотов холостого хода такой мотор может выдавать необходимую для активной езды тягу.

Если посмотреть на графики современных турбированных агрегатов, то видно, как кривая резко взлетает вверх и стабилизируется, образуя пологую полку момента, которая длится от 1500 до 5000 оборотов. Это значит, что мотор будет одинаково хорошо тянуть как на малых оборотах, так и на больших, и не потребует перед рывком на обгон раскручивания коленвала до «красной зоны». Он обеспечит приемлемое ускорение даже с 3000 оборотов.

Поэтому при аналогичной мощности турбированные моторы с длинной «полкой» крутящего момента больше нравятся водителям, чем атмосферные агрегаты, у которых крутящий момент на низких оборотах в полтора раза ниже. И при выборе двигателя лучше обращать внимание на крутящий момент.

Что же касается максимальной мощности, то она применяется водителями крайне редко. Мало кто постоянно раскручивает мотор до «красной зоны» тахометра. Это дорого и чревато большим износом деталей силового агрегата.

Что важнее — крутящий момент или лошадиные силы?

Обычно при оценке характеристик того или иного автомобиля в первую очередь мы обращаем внимание на мощность двигателя или количество лошадиных сил. Но не менее важной характеристикой является крутящий момент. Давайте разберемся, в чем разница между ними.

Появившаяся задолго до первого механического транспортного средства «лошадиная сила» условна, так как определяет относительный уровень производительности среднестатистической лошади путем определения работы, необходимой для поднятия 75–килограммового груза на один метр за одну секунду.

Шотландский инженер Джеймс Уатт ввел новую единицу измерения мощности в лошадиную силу, но в системе СИ единицу мощности назвали уже в его честь — ватт (Вт). 1 киловатт (кВт) равен 1,36 л. с. Но в обычной жизни лошадиные силы оказались как-то ближе к народу, поэтому мы получаем письма с налогом за количество лошадиных сил в наших автомобилях, а не за киловатт и хвастаемся друзьям именно количеством«лошадей». Лошадиная сила остается очень популярной внесистемной единицей измерения мощности для транспортных средств. Кстати, типичная лошадь имеет предельную мощность порядка 13–15 лошадиных сил, как это ни забавно. Во всяком случае, на диностенде в режиме 5–минутной нагрузки она может выдать примерно столько. А тягловые тяжеловесы способны выдать даже в даже за 25 сил на такой отрезок времени.

А сам автомобиль тянет вперед не сама мощность, а крутящий момент, выдаваемый силовым агрегатом. И именно с ним мы сталкиваемся каждый день в обычной жизни чаще. Например, открывая крышку пластиковой бутылки, вы используете именно крутящий момент, именуемый также моментом силы или вращательным моментом. Ведь вряд ли вы проверяете, как быстро открутили крышку?

Крутящий момент измеряется в ньютон-метрах (Н·м). И он тесно связан с мощностью, ведь для двигателя с вращающимся валом мощность на любых оборотах легко рассчитать, зная момент. И наоборот, зная мощность, можно подсчитать момент. Упрощенная формула его расчета выглядит так:

P = M x 9549 x N

где P — это мощность двигателя в киловаттах (кВт), а N — это количество оборотов коленчатого вала в минуту.

Мощность демонстрирует количество работы, которое выполняет двигатель за промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Например, ускорение машины в каждый момент времени при постоянном передаточном отношении трансмиссии пропорционально крутящему моменту. А вот время разгона с одной скорости до другой, именно мощности двигателя в этом диапазоне оборотов, иначе говоря, проделанной работе. В общем-то, всем изучавшим физику в школе это покажется очевидным, но, к сожалению, не все помнят или не соотносят знания теоретического курса и примеры из реальной жизни.

Уверен, многие автолюбители даже не обращают внимание на значение крутящего момента в списке технических характеристик автомобиля и на обороты, при которых он достигается. А ведь чем выше крутящий момент и с чем более низких оборотов он достигается, тем приятнее и «эластичнее» ощущается двигатель, тем выше его реальная мощность на промежуточных режимах. Именно поэтому дизельные двигатели с турбонаддувом зачастую кажутся более приятными в обращении, чем более форсированные атмосферные бензиновые, которые необходимо «крутить» в отсечку ради достижения максимальной динамики разгона. И именно по этой причине тот, кто вкусил радости хорошего двигателя с турбонаддувом, уже не очень хочет пересаживаться на атмосферные, которые даже при схожей мощности «едут» ощутимо хуже.

Почему же такое внимание уделяется именно максимальной мощности? Дело в том, что владельца машины редко волнует максимальное ускорение автомобиля на скорости 20 или 30 километров в час, как физическая величина. Его, скорее всего, интересует динамика разгона в диапазоне 0–100, 80–120 или 100–200, а не абстрактное ускорение. А в этом случае речь идет о приращении кинетической энергии автомобиля, а значит, о проделанной двигателем работе. Которая зависит именно от мощности. В случае с идеальной трансмиссией проделанная работа будет прямо пропорциональна максимальной мощности мотора.

Читайте также  Кпд бензинового двигателя и дизеля

Вот только машин с идеальными трансмиссиями не бывает, если это не карьерные самосвалы с электропередачей, а значит, важна не только максимальная мощность, но и мощность во всем диапазоне оборотов, в котором вынужденно будет работать двигатель при таком разгоне. Оценить ее можно по графику внешней скоростной характеристики автомобиля, так называемой ВСХ, зная передаточное отношение трансмиссии на каждой передаче и предельные обороты мотора. А косвенно понять, насколько мощным будет мотор на промежуточных оборотах, позволяют именно данные по максимальному крутящему моменту и оборотам, при которых он достигается. Ведь чем выше момент на всех оборотах ниже максимальной мощности, тем ближе мощность на этих оборотах к максимально возможной и тем большую работу сможет проделать двигатель. Сложно? Тогда просто используйте эмпирическое правило, упомянутое выше.

Главное, помните, что мощность и крутящий момент — зависящие друг от друга величины, поэтому всегда важно и то, и другое.

Мощность двигателя или крутящий момент? Какая характеристика важнее?

Большинство автолюбителей судят о ходовых характеристиках авто по мощности двигателя. Обычно ее измеряют в киловаттах или лошадиных силах. Чем она больше, тем солиднее. Максимальную мощность двигатель внутреннего сгорания развивает на определенных оборотах. Обычно для бензиновых автомобилей это около 6000 оборотов в минуту, для дизельных – около 4000 об./мин. Именно поэтому дизельные движки относятся к классу низкооборотных, бензиновые – высокооборотные. Однако и среди бензиновых двигателей есть низкооборотные, и наоборот – есть дизельные высокооборотные.

Часто водитель сталкивается с ситуацией, когда необходимо придать авто значительное ускорение для выполнения очередного маневра. Жмешь педалью акселератора в пол, а автомобиль практически не ускоряется. Вот тут-то и нужен мощный крутящий момент на тех оборотах, на которых работает в данный момент двигатель. Именно он характеризует приемистость автомобиля. Поэтому каждый автовладелец должен знать, на каких оборотах его авто имеет максимальный крутящий момент перед тем, как садить красивую девушку в свою машину и показывать чудеса пилотирования.

Крутящий момент двигателя, что это?

Из курса физики за 9 класс многие помнят, что крутящий момент М равен произведению силы F, прикладываемой к рычагу длиной плеча L. Формула:

Длина в системе СИ измеряется в метрах, сила – в ньютонах. Нетрудно определить, что момент измеряется в ньютон на метр.

Основная сила в двигателе внутреннего сгорания вырабатывается в камере сгорания в момент воспламенения смеси. Она приводит в действие кривошипно-шатунный механизм коленвала. Рычагом здесь является длина кривошипа, то есть, если эта длина будет больше, то и крутящий момент тоже увеличивается. Однако, увеличивать кривошипный рычаг бесконечно нельзя. Во-первых, тогда надо увеличивать рабочий ход поршня, то есть размеры движка. Во-вторых, при этом уменьшаются обороты двигателя. Двигатели с большим рычагом кривошипного механизма применяют в крупномерных плавательных средствах. В легковых авто с небольшими размерами коленвала не поэкспериментируешь.

В технических характеристиках, указанных на модель двигателя, параметр максимального крутящего момента указывается совместно с величиной оборотов (либо пределами величин оборотов), при которых такой крутящий момент может быть достигнут. Обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4500 об./мин., то двигатель низкооборотный, более 4500 – высокооборотный.

От величины крутящего момента напрямую зависит характеристика мощности двигателя автомобиля. Почему считается, что бензиновые движки заведомо могут обеспечить большую, чем дизельные, мощность. Дело в том, что в силу конструктивных особенностей и управляемости системы зажигания бензиновые двигатели могут длительное время работать на оборотах 8000 об./мин и более. Дизельные движки достигают максимального крутящего момента на более низких оборотах. В городском ритме движения, когда нет необходимости развивать предельные обороты, дизельные авто нисколько не уступают бензиновым, наоборот, на малых и средних оборотах спокойно можно двигаться в ритме от 30 до 60 км/час, не переключая третью либо 4-ю передачу.

Пересчитать крутящий момент в мощность двигателя и наоборот можно, руководствуясь упрощенной физической формулой:

По этой формуле получится мощность Р в киловаттах. Вводить надо М – крутящий момент двигателя в ньютон на метр, n– величина оборотов двигателя. Здесь 9549 — число, которое получается после упрощения основной формулы в результате перемножения констант (ускорения свободного падения, числа Пи и т.п.).

Для перевода киловатт в лошадиные силы следует результат умножить на 1,36. В некоторых случаях в технических характеристиках указывается крутящий момент на холостых оборотах.

Зависимости мощности двигателя и крутящего момента от количества оборотов

Типовые характеристики зависимости мощности и крутящего момента от оборотов двигателя приведены на рис.1

Мощность двигателя или крутящий момент? Какая характеристика важнее? Автобурум, Двигатель, Крутящий момент, Длиннопост

Из графика видно, что крутящий момент стабильно увеличивается до 3000 оборотов, затем наступает относительно пологий участок. На оборотах около 4500 об/мин достигается максимум крутящего момента около 178 ньютон*метр. В то же время мощность двигателя продолжает расти до достижения оборотов около 5500 об/мин, и на этих оборотах достигает около 124 лошадиных сил. Это понятно, если обратиться к формуле, в которой видно, что мощность пропорциональна произведению крутящего момента на величину оборотов. После 5500 оборотов в минуту уменьшение крутящего момента превышает крутизну увеличения оборотов, и мощность начинает уменьшаться.

Как это объяснить физически, то есть, без формул. На малых оборотах в область сгорания поступает небольшое количество воздушно-топливной смеси в единицу времени, соответственно, крутящий момент и мощность небольшие. Увеличивая обороты, количество смеси (а вслед за ним и мощность, крутящий момент) возрастает. Достигая больших значений, мощность уменьшается по следующим причинам:

механические потери на трение механизмов;

недостаточное нагнетание воздуха (кислородное голодание).

Из соображений обеспечения максимального количества поступающего воздуха (кислорода) в камеру сгорания даже на небольших оборотах двигателя применяют системы турбонаддува с электронным регулированием. Используя такие системы можно обеспечить равномерность характеристик крутящего момента в широком диапазоне оборотов двигателя, как показано на рис.2

Мощность двигателя или крутящий момент? Какая характеристика важнее? Автобурум, Двигатель, Крутящий момент, Длиннопост

Уровень максимального крутящего момента около 242 ньютон на метр поддерживается в пределах от 2000 до 5000 об/мин коленвала. Это значит, что можно без волнений начинать обгон, двигаясь на относительно низких оборотах двигателя.

Высокооборотные движки позволяют максимально увеличивать мощность за счет уверенной работы на предельно высоких оборотах вплоть да 8000 об/мин, как показано на рис.3

Мощность двигателя или крутящий момент? Какая характеристика важнее? Автобурум, Двигатель, Крутящий момент, Длиннопост

Если вы серьезно подходите к динамическим характеристикам своего или вновь приобретаемого автомобиля, знать характеристики крутящего момента и мощности двигателя в зависимости от оборотов просто необходимо. Их можно найти, покопавшись на различных форумах, сайтах автодилеров и производителей.

Для городского ритма движения лучше подойдут низкооборотные двигатели с турбонаддувом. Если вы любите попалить резину, посоперничать на трассе, лучше выбрать автомобиль с высокооборотным бензиновым движком.

Можно ли увеличить крутящий момент двигателя

Величину необходимого крутящего момента определяют конструкторы еще на предварительном этапе конструкторской разработки двигателя внутреннего сгорания. От нее зависят и другие элементы автомобиля: подвеска, тормозная и рулевая система, аэродинамика. Поэтому, прежде чем приступить к самостоятельному форсированию двигателя, убедитесь, что ваша машина не развалится или не улетит в космос на умощненном двигателе.

Способов увеличения крутящего момента и, соответственно, мощности много:

изменение геометрических свойств поршневой группы, увеличение компрессии;

замена форсунок или инжекторов;

внесение изменений в систему воздухозабора;

чип-тюнинг путем перепрограммирования топливной карты блока управления двигателя.

Опыт показывает, что принудительное увеличение крутящего момента и мощности двигателя на 20% уменьшает ресурс его работы приблизительно в два раза. Поэтому, если вы не фанат дрэг-рейсинга, дрифтинга и красивых девушек, лучше не экспериментировать.

На что влияет объем двигателя

Внезапно обнаружил, что даже ближайшие мои друзья — весьма технически эрудированные люди, — весьма смутно понимают, почему в авто- и мототехнике есть двигатели с одинаковым или очень близким рабочим объемом, но по динамическим характеристикам отличающиеся капитально. Я не знаю, насколько местная аудитория подкована в технике (подозреваю, что весьма некисло), но для тех, кого действительно интересует «как оно устроено», проведу по возможности без зауми ликбез на тему чо там как, и почему.

А чтобы не плодить миллиарды букаф, давайте построим рассказ по принципу ответов на вопросы. Постараюсь отвечать по возможности лаконично.

Вопрос: На что влияет рабочий объем двигателя?
Ответ: На все. На его весовые, динамические и экономические характеристики.

Вопрос: Можно ли сказать, что более литражный мотор однозначно мощнее, чем менее литражный при прочих равных?
Ответ: Если объем различен, то никаких «прочих равных» уже быть не может. Уже изменилась одна из основных характеристик мотора.

Читайте также  Можно ли включать вебасто при работающем двигателе

Вопрос: Ну хорошо, допустим, я некорректно выразился. Возьмем два хондовских движка: от Steed/Shadow 400 и от Shadow/RS 750 — оба V-twin, оба с примерно одинаковой степенью сжатия. Один развивает 33 лошади, второй 45. Если промасштабировать дальше с соблюдением пропорций, будет ли расти мощность в той же степени, как и объем?
Ответ: Может и расти, а может и не расти. Все зависит от конструкции и настроек двигателя. Никаких других правил нет и быть не может — ибо еще раз, все зависит от конкретной конструкции и конкретных настроек. В данном случае вообще имеет место некорректное сравнение. Чесоточный развивает свои 33 лошадки при частоте вращения коленвала в 10000 7500 об./мин. В то время как мотор почти двухкратно большим объемом имеет свои 45 кобыл всего-лишь при частоте вращения 5500 об./мин. На этих оборотах «чесотка» выдаст хорошо, если 14-18 20 сил, то есть почти втрое вдвое меньше, чем более кубатурный двигатель.

Мотор от 750-кубовой Shadow

59.JPG» />

Двигатель от «Теней» объемом 400/600 кубов — внешне он одинаков для обеих модификаций Shadow VLX.

Вопрос: То есть сравнение некорректно.
Ответ: Да. Непонятно, что конкретно сравнивалось. Если тупо два мотора — то 750-кубовый, конечно, намного мощнее и по моменту сильнее. Так же как двигатель мотоцикла VTX1300 (тоже V-twin) еще мощнее и сильнее: 75 л. с. при тех же 5000 об./мин. Вот это сравнение более корректно…

Вопрос:… а как же…
Ответ:… было бы, если бы мы не учитывали чумовой, почти двухкратной разницы в крутящем моменте этих моторов. Так, 750-кубовая «Тень» развивает около 60 Н*м, в то время как VTX выдает на-гора аж 123 ньютон-метра. Тяга вдвое больше! Собственно, объем тоже почти вдвое.

Двигатель от 1300-кубовой Honda VTX.

Вопрос: то есть можно сказать, что мощность — это штука манипулятивная, и, сравнивая, смотреть надо на показатели максимального крутящего момента?
Ответ: не совсем. Но безусловно, оценка по максимальному моменту позволяет сравнить два похожих мотора куда корректнее, чем по максимальной мощности. При условии, что двигатели концептуально близки, конечно. Сравнивать спортовую 4-цилиндровую истеричку с эндурной флегмоодностволкой той же кубатуры мальца неприлично.

Вопрос: Ну а как же тогда быть с непохожими моторами?
Ответ: А непохожие и сравнивать бессмысленно. Эти двигатели создаются под конкретные задачи, и если движки априори непохожи друг на друга, то, значит, создавались для разных целей. Какое еще сравнение?

Вопрос: А вот и нет! Например, BMW F650GS в разные годы имел и «одноствол» от Rotax, и 2-горшковый мотор уже под своей маркой — правда, с объемом на 150 кубиков больше…
Ответ: верно. Но это значит лишь то, что инженеры BMW признали двухцилиндровую модель удачнее для данного мотоцикла — по целому комплексу показателей, в том числе по уравновешенности, мощности, эластичности и еще туче критериев. Где-то они однозначно выиграли (в энерговооруженности, например), где-то явно проиграли (в массе двигателя и его себестоимости производства). Прямое сравнение двух моторов в этом случае не имеет общей «печки», базы. Делать какие-то выводы о влиянии какого-то одного параметра на целый их выводок — просто глупо.

Вопрос: Ну хорошо, а если абстрагироваться от корректности сравнений. Можно какие-то определенные закономерности в «размерности» двигателей выявить?
Ответ: Можно. Чем больше объем одного цилиндра, тем больше обычно момент, а двигатель более заточен под тяговую езду. И наоборот, чем меньше объем одного цилиндра, тем меньше обычно крутящий момент, а двигатель более оборотистый.

Вопрос: С чем это связано?
Ответ: С назначением двигателя, конечно же. Но если вопрос об объективных параметрах, то вкратце объяснить можно так.

Самый простой способ увеличить мощность — форсировать мотор по скорости вращения коленвала. Мощность (при постоянном моменте) зависит от оборотов коленвала строго линейно. Поскольку крутящий момент есть прямой наследник эффективного давления в цилиндре, а эта величина сильно зависит от условий газообмена там, то сохранить ровную полку момента на всем диапазоне оборотов вряд ли получится. Но это и не нужно: достаточно удерживать момент просто на разумном значении, можно даже со сдвигом вправо — тогда мощность будет расти еще более круто и достигнет стратосферных значений где-нибудь в районе 18 000 оборотов.
Беда в том, что мотор со столь длинным диапазоном оборотов, становится практически однорежимным: нормально едет только в какой-то одной зоне оборотов. Для спортов и городских жужжалок — ближе к максимальным значениям. То есть надо крутить, чтобы получить достойную отдачу.
Обратный прием — можно ограничить диапазон оборотов, а форсирование мотора провести увеличением эффективного давления в цилиндре, то есть форсануть движок по моменту. Тогда он будет тянуть ровно, мощно, на всем диапазоне. Такая характеристика лучше подходит эндуро или круизерам.

Возьмем два 650-кубовых мотора, совсем разных по назначению. Например, упомянутый BMW F650GS, того самого одноствольного (2006 год, например) типа, и классическую 4-цилиндровую «сибиху» CB650f. Объем один и тот же на обоих движках. Но «бэха» прет с «нуля» так, что голова на спину запрокидывается, а Хонда толкает в копчик, только если ее раскрутить. Сравните обороты максимальной мощности: 6500 у BMW и 11000 у Honda. С моментом похоже: у «гуся» пик на 5000 об./мин, у «сибихи» — на 8000 оборотах.

Вопрос: Интересно, с чем конкретно, с конструкторской точки зрения это связано?
Ответ: Не поверите, с конструкцией двигателя. У BMW один огромный цилиндр диаметром 10 см и ходом в 8,3. У Хонды — четыре горшка в ряд, каждый размером 6,7х4,6. Суммарный объем такой же, но процесс газообмена — ключевой для формирования эффективного давления в цилиндре (параметр «Me»), совершенно разный. Под этот процесс затачиваются профили каналов, диаметры клапанов, профили кулачков распредвалов и фазы газораспределения.
Например, в погоне за мощностью инженеры Honda решились увеличить обороты. Для этого им нужно было протащить сквозь клапаны чуть ли не вдвое больше бензовоздушной смеси, чем происходит у BMW. Но величина подъема клапана — параметр строго ограниченный, а кол-во клапанов на цилиндр одинаковое у обоих движков чисто по компоновочным соображениям. Поэтому японцы делают финт ушами: учетверяют число цилиндров. Соответственно клапанов становится также в четыре раза больше. Но что важнее, объем воздуха, протаскиваемый через один цилиндр, уменьшается также в четыре раза! При прочих равных, разумеется. Суммарное проходное сечение 16-ти хондовских клапанов примерно в 1.5 раза больше, чем 4-х клапанов у «гуся», а воздуха, повторюсь, через один цилиндр пропихивать теперь нужно в 4 раза меньше при одинаковых оборотах. Вот и родилась возможность поднять эти самые обороты, а вместе с ними и мощность. Разумеется, там и другие шаманства идут в ход: перекрытие фаз клапанов, настройка впускного и выпускного коллекторов, и с уменьшением действия инерционных факторов, и с позиции уравновешенности (а значит, паразитных нагрузок на конструкцию), и т. д., и т. п.

Вопрос: А как себя при этом ведет момент?
Ответ: Отличный вопрос! Момент на 4-цилиндровой Honda примерно такой же, как на 1-ствольном BMW (около 60 Н*м), однако если рассматривать весь диапазон оборотов двигателя, то окажется, что «гусь» выдает куда больший момент на протяжении большего % своего диапазона. Отсюда и разница в тяге: «гусь» сразу же прет как танк, в то время как «сибиху» до максимума ее момента еще нужно докрутить — половину диапазона оборотов она сильно проигрывает 1-цилиндровому BMW.

Вопрос: Но если поставить два мотоцикла вместе, то…
Ответ: То получится очередное сравнение каратиста с борцом. Мотоциклы разные, заточены под разные требования и условия эксплуатации, и сравнивать их «впрямую» немного неумно. Там, где «Хонда» оторвется и исчезнет в туманной дали асфальтового далека, «гусь» проиграет, в том числе и по максимальной скорости. Зато на неровном и крутом грунтовом подъеме его постоянно больший крутящий момент, а главное, запас по нему, позволит носатой «бэхе» обставить японскую коробочку как ребенка.

Вопрос: А если…
Ответ: А вот про «если» мы поговорим в следующий раз. Если будет на то обоюдное желание.

Статьи по теме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Back to top button