Как влияет вакуумный усилитель на работу двигателя - Automotoworld.ru

Как влияет вакуумный усилитель на работу двигателя

Проверка вакуумного усилителя тормозов: 4 простых теста

Проверка вакуумного усилителя тормозов: 4 простых теста

Одной из важнейших деталей в тормозной системе автомобиля является вакуумный усилитель. Его работа позволяет снизить усилия, прилагаемые водителем при нажатии на педаль тормоза. Эффективность работы тормозной системы при этом остается неизменной. Как и любая другая деталь машины, вакуумный усилитель тормозов (ВУТ) подвержен износу, а значит, может выйти из строя при длительной эксплуатации. Поэтому необходимо периодически проводить проверку ВУТ. Как провести проверку вакуумного усилителя тормозов, расскажем далее.

Принцип работы вакуумного усилителя тормозов

Вакуумный усилитель тормозов

Раньше легковые машины не были оснащены «вакуумниками». Водителю требовалось жать на педаль тормоза, прилагая значительные физические усилия (около 80 кг) для того, чтобы замедлить автомобиль при экстренном торможении. Сегодня вакуумные усилители тормозов установлены на все машины, и водителю требуется лишь слегка нажать на педаль, чтобы остановить транспортное средство.

Для правильной и своевременной проверки ВУТ необходимо представлять его конструкцию и понимать принцип действия. Вакуумный усилитель – это металлический корпус цилиндрической формы, состоящий из следующих элементов:

  • диафрагма, которую толкает возвратная пружина;
  • воздушный клапан, имеющий два канала – вакуумный и атмосферный;
  • шток, располагаемый в центре корпуса ВУТ. С одного конца он соединен с педалью тормоза, с другого – с главным тормозным цилиндром (ГТЦ);
  • патрубок, который подключен к обратному клапану. По нему подводится разрежение от впускного коллектора двигателя.

Цилиндрический корпус состоит из двух камер: вакуумной и атмосферной. Между собой они разделены мембраной. Обе камеры соединены каналами воздушного клапана, которые поочередно открываются при нажатии и отпускании педали тормоза.

Цилиндрический корпус

Рассмотрим алгоритм работы классического вакуумного усилителя тормозов:

  1. Если тормозная система не активирована водителем, то давление в камерах одинаково, следовательно, и толкатель, и шток остаются в неподвижном состоянии.
  2. Когда водитель нажимает педаль тормоза, шток двигается вперед. В этот момент нарушается связь двух камер через вакуумный канал. Проход, который соединяет атмосферную камеру и наружный воздух, открывается с помощью клапана.
  3. Разница давлений приводит к изгибу диафрагмы в сторону разрежения, помогая нажимать на толкатель и поршень основного гидроцилиндра.
  4. В тот момент, когда водитель прекращает жать на педаль тормоза, клапаном перекрывается атмосферный канал и открывается вакуумный. Вследствие этого происходит выравнивание давления в камерах, и пружина отбрасывает мембрану в изначальное положение.

Справка. В некоторых моделях машин для создания разрежения используется отдельный вакуумный насос тормозной системы. Данная схема эффективна при низком атмосферном давлении (например, в высокогорье).

Рекомендуем

Причины проверки работоспособности вакуумного усилителя тормозов

Причины проверки работоспособности вакуумного усилителя тормозов

Тормозная система машины полностью не откажет, даже если сломается усилитель, однако водителю придется приложить намного больше усилий для того, чтобы замедлить движение автомобиля. Явный признак выхода из строя ВУТ – педаль становится «жесткой», а эффективность торможения резко падает. Это приводит к созданию опасной ситуации на дороге.

Кроме того, проявляются и другие признаки:

  • свободный ход увеличивается до половины;
  • работа силового агрегата становится нестабильной, особенно это заметно на холостом ходу;
  • тормоза «заклинивает», то есть автомобиль продолжает замедляться даже тогда, когда педаль тормоза уже отпущена.

Важно. Проверку ВУТ необходимо проводить исключительно тогда, когда двигатель автомобиля заведен, поскольку правильно работать усилитель может только при подаче разрежения от мотора.

Рассмотри причины, по которым могут возникнуть указанные выше повреждения вакуумного усилителя:

  • соединение шланга отбора вакуума неплотное, или происходит подсос воздуха через повреждение в шланге;
  • потеря герметичности из-за износа диафрагмы;
  • поломка воздушного клапана;
  • разгерметизация корпуса;
  • снижение упругости пружины.

Уплотнить соединение и заменить патрубок можно самостоятельно, только не забудьте проверить «вакуумник» на работоспособность. Однако если проверка показала, что сломался усилитель, то наверняка придется менять весь механизм.

Рекомендуем

4 простых теста для проверки вакуумного усилителя тормозов

Проверка вакуумного усилителя тормозов

Проверка вакуумного усилителя тормозов – процедура несложная, любой начинающий автолюбитель с ней легко справится. Снимать деталь с машины для проверки на неисправность нет необходимости. Для этого достаточно провести четыре простых теста, указывающих на наличие проблемы.

Тест № 1

Выполнить проверку несложно:

  1. Запустите мотор автомобиля. Прогрейте его в течение нескольких минут.
  2. Двигатель машины должен работать на холостых оборотах. С помощью инструмента (например, пассатижей) передавите патрубок отбора разрежения, ведущий от коллектора, либо отключите его от штуцера и заглушите последний деревянным клином.
  3. Если нет перебоя в работе мотора – система герметична.
  4. Повышение или стабилизация оборотов силового агрегата указывает на подсос воздуха через вакуумный усилитель тормозов или подающий шланг.

После того как вы провели проверку и определили неисправность усилителя, необходимо проверить шланг передачи вакуума. Для этого патрубок надо отсоединить и осмотреть на наличие повреждений. Далее изучите состояние хомутов. Если есть необходимость, замените их на новые.

Тест № 2

Заведите автомобиль, пусть он поработает некоторое время на холостых оборотах. Может понадобиться около семи минут. Затем заглушите двигатель и полностью выжмите педаль тормоза. Это создаст вакуум в усилителе тормозов. Далее педаль следует отпустить и тут же снова выжать.

Если при втором нажатии педали ее ход стал меньше, значит, вакуум не создается и есть проблемы в работе вакуумного усилителя тормозов. В случае, когда второе нажатие не отличается от первого, можно сделать вывод, что система исправна. Если результаты теста оказались недостаточно определенными, перейдите к следующему шагу.

Тест

Тест № 3

Нажмите на педаль тормоза около восьми раз. Сделайте это при заглушенном двигателе автомобиля. После этого еще раз выжмите педаль до упора и запустите двигатель машины. В случае, если нет проблем в работе вакуумного усилителя тормозов, в системе возникнет вакуум. Мембрана надавит на шток, тот оттянет за собой толкатель, соединенный с педалью. И в этот момент вы почувствуете, как педаль опустится еще ниже.

Педаль

Если же педаль осталась на месте, это означает только одно – вакуум в системе не возник. Следовательно, существует неисправность, которая этому препятствует. В этом случае вам надо выполнить четвертую проверку.

Тест № 4

Этот способ проверки вакуумного усилителя тормозов позволит вам уточнить есть, ли утечки воздуха. Для этого заведите двигатель автомобиля, выжмите педаль тормоза до упора и заглушите двигатель.

Если в течение тридцати секунд вы не наблюдаете отклонения педали от максимально выжатого состояния, значит, проблем с вакуумным усилителем тормозов нет.

При возвращении педали в исходное положение под действием возвратной пружины мы делаем вывод, что давление внутри рабочей камеры возрастает, следовательно, есть неисправность механизма.

Рекомендуем

Проверка клапана вакуумного усилителя тормозов

Вакуумный усилитель тормозов может плохо работать из-за неисправности обратного клапана. Чтобы провести проверку его работоспособности, снимите шланг, достаньте клапан из корпуса вакуумного усилителя тормозов и наденьте на него резиновую грушу. Ее необходимо подсоединить с наружной стороны (с той, с которой соединяется шланг). Далее грушу следует сжать и отпустить. Сжатая груша свидетельствует об исправности обратного клапана.

Проверка клапана вакуумного усилителя тормозов

В противном случае вам придется его заменить. Также данный метод вы можете использовать для проверки на герметичность впускного шланга, в том случае, когда под рукой не оказалось компрессора.

Рекомендуем

Регулировка и ремонт узла после проверки вакуумного усилителя тормозов

Регулировка и ремонт узла после проверки вакуумного усилителя тормозов

В целом регулировка ВУТ сводится к настройке свободного хода тормозной педали. Чтобы правильно его выставить, необходимо настроить длину штока. С помощью регулировочного болта контролируется зазор/выступ. Правильная настройка положения самого болта позволит установить идеальный момент срабатывания клапанов.

Когда будет закончена проверка на герметичность, не забудьте отрегулировать свободный ход педали тормоза. Настройка длины штока приводит к возникновению зазора, который определяет степень давления на тормозной цилиндр. Поэтому очень важно правильно выставить длину штока и поставить подходящий зазор.

Свободный ход педали при неработающем моторе должен составлять от пяти до четырнадцати миллиметров. Этот зазор контролируется болтом, находящимся над плоскостью вакуумного усилителя тормозов. Маленький зазор приводит к заеданию рабочего цилиндра, вследствие чего происходит быстрый износ колодок и повышается потребление топлива автомобилем. Кроме того, машина начинает произвольно притормаживать, как будто вы едете на ручном тормозе. Большой же зазор, напротив, приводит к увеличению хода педали, что свидетельствует о нарушении герметичности в узле.

Выше мы рассказали, как провести проверку работы тормозного вакуумного устройства и отрегулировать его работу в случае необходимости. Теперь скажем несколько слов о его ремонте.

Читайте также  Номер двигателя шевроле лачетти

Чтобы обеспечить собственную безопасность при поломке усилителя, безотлагательно примите меры по его ремонту или замене. И если вакуумные шланги в бензиновых автомобилях или насосы в дизельных вы можете заменить самостоятельно, не прибегая к услугам автосервиса, то более серьезные работы рекомендуется доверить профессионалам.

Конечно, это стоит определенных денег, но когда на кону собственная безопасность, лучше не экономить. Обратитесь к специалистам. Они не только грамотно проведут проверку, но и качественно, с гарантией выполнят все необходимые работы. Следует отметить, что после ремонта важно синхронизировать колеса при торможении и провести проверку системы ABS/ESP. Для этого необходим диагностический стенд и специализированное оборудование.

Диагностический стенд

Бывают случаи, когда отремонтировать «вакуумник» выходит дороже, чем приобретение усилителя, бывшего в употреблении, но находящегося в исправном состоянии. Поэтому рекомендуется при необходимости поискать устройство на разборках.

Если вы чувствуете уверенность в собственных силах и решили после проверки самостоятельно отремонтировать неисправный вакуумный усилитель, то действуйте следующим образом.

Для начала в моторном отсеке демонтируйте всю обивку и снимите накладку ветрового стекла. Не снимайте трубки, ведущие к ГТЦ. Это может привести к попаданию в систему воздуха. Далее открутите цилиндр от вакуумного усилителя и осторожно наклоните вперед, чтобы предотвратить деформацию тормозных трубок. Шланг передачи вакуума перед этим необходимо снять со штуцера усилителя.

Внимательно изучите рекомендации, которые дает производитель и приступайте к демонтажу усилителя. Открутите крепежные болты и отсоедините клемму провода, идущего к стоп-сигналу.

Только после этого снимите педаль, используя специальный инструмент. Если вы хорошо разбираетесь в конструкции автомобиля, то справитесь с проверкой и ремонтом ВУТ. Однако лучше предварительно зайти в Интернет и найти инструкцию со схемой усилителя. Это заметно ускорит реализацию поставленной задачи и повысит ваши шансы на успех.

Вакуумный усилитель тормозов

Безопасность во время движения практически полностью зависит от работоспособности тормозной системы. И чтобы сделать эту систему простой и надежной, в ее устройстве применили гидропривод, благодаря которому усилие, прилагаемое водителем на тормозную педаль, посредством жидкости передается на рабочие механизмы, установленные на ступицах колес.

Но в таком приводе есть одна особенность – для эффективного торможения колодки должны прижиматься к дискам или барабанам со значительным усилием. Силы, прилагаемой водителем – в целом достаточно, чтобы воздействовать на тормозные механизмы. Но частое нажатие на педаль, да еще и с хорошим усилием, приведет к очень быстрой усталости. Решить эту проблему гидропривода системы тормозов помогает усилитель.

Этот элемент позволяет существенно увеличить давление рабочей жидкости в приводе системы во время воздействия на педаль, поэтому водителю при торможении не приходится прилагать значительные усилия.

Конструкция

На автотранспорте применяются четыре типа таких устройств:

  1. Вакуумный
  2. Гидравлический
  3. Электрогидравлический
  4. Электромеханический

Первый вариант – самый ходовой и очень широко используется. Электрогидравлический и гидравлический же узлы используются лишь на ряде авто. Самый совершенный и перспективный электромеханический узел, он уже внедрен на некоторых авто.

Вакуумный усилитель получил распространение благодаря конструктивной простоте. Он является промежуточным звеном между педалью и главным тормозным цилиндром (последний закрепляется на корпусе вакуумника). Такое место расположения указывает на то, что этот узел повышает усилие, прилагаемое водителем, а не воздействует на жидкость. Обнаружить вакуумник несложно – обычно он крепиться к задней стенке моторного отсека и к нему прикручен цилиндр с выходящими металлическими трубками.

расположение вакуумного усилителя в моторном отсеке

В большинстве авто его можно увидеть именно там

Устройство усилителя тормозов этого типа включает в себя:

  • Корпус (состоит из двух половин, соединенных в единую конструкцию вальцовкой);
  • Диафрагма;
  • Толкатель, подходящий к педальному блоку и соединенный с педалью;
  • Шток, входящий в цилиндр и воздействующий на его поршень;
  • Возвратные пружины.

устройство вакуумного усилителя

Устройство вакуумного усилителя

Диафрагма размещается внутри корпуса, деля его на полости, называемые камерами. Полость со стороны цилиндра, является вакуумной, и она через клапан соединяется с источником, создающим разрежение.

Используемый клапан называется обратным и в его задачу входит разъединение полости и источника разрежения и выполняет он две задачи. Первая из них – поддержание вакуума в одном значении при изменяющихся режимам работы мотора. Также этот элемент предотвращает оказание негативного влияния на функционирование силовой установки при повреждении корпуса или мембраны вакуумника.

Камера, расположенная со стороны педального узла, носит название атмосферной. В этой половине вакуумника сделан корпус, в котором размещен следящий клапан. В корпусе проделаны каналы, один из них соединяет полости между собой, а второй – камеру с атмосферой. Эти каналы и использует следящий клапан при работе усилителя. Сам же клапан приводится в движение толкателем.

Шток и толкатель хоть и не имеют жесткой связи и между ними располагается диафрагма с закрепленным в ней поршнем, но могут воздействовать друг на друга, что обеспечивает работоспособность системы при отказе вакуумника. Также шток и толкатель оснащены пружинами, устанавливающими эти элементы в начальное положение после прекращения торможения. Пружина штока установлена в вакуумной камере, а упругий элемент толкателя располагается в корпусе клапана.

работа вакуумного усилителя

В качестве источника вакуума выступает впускной коллектор силового агрегата. При функционировании силовой установки, в цилиндры засасывается большое количество воздуха. Соединение трубопроводом вакуумной полости с коллектором позволяет откачивать воздух из вакуумника самим двигателем и поддерживать в нем разрежение.

Принцип работы

Принцип функционирования усилителя не такой уж и сложный. При отпущенной педали следящий клапан держит открытым канал, объединяющий полости между собой, поэтому в обеих камерах воздух разрежен двигателем

При торможении водитель воздействует на педаль, при этом начинает смещаться толкатель и через поршень начинает давить на шток гидроцилиндра. Движение толкателя также приводит к смещению следящего клапана.

На начальном этапе движения клапан перекрывает первый канал и разъединяет полости – они становиться разделены и герметичны друг от друга.

При дальнейшем перемещении клапан открывает канал, объединяющий атмосферную полость с атмосферой. Поскольку полости – разъединены, то в вакуумной камере сохраняется разрежение, созданное двигателем. При соединении каналом атмосферной полости с атмосферой, воздух заходит в нее — возникает разница давления между камерами, что приводит к прогибанию мембраны (она смещается в сторону главного тормозного цилиндра). В результате мембрана поршнем, зафиксированным в ней, начинает давить на шток толкая рабочие поршни главного цилиндра.

принцип работы вакуумного усилителя

Наглядный пример работы усилителя

При отпускании педали пружины возвращают шток, толкатель и следящий клапан в исходное положение и разница давления устраняется соединением полостей каналом.

Достоинства и недостатки

Несмотря на то, что функционирование усилителя построено на разнице давления, вакуумник показал себя очень эффективным узлом, способным увеличить усилие, приложенное водителем на 60-70%.

Широкое распространение вакуумные усилители получили благодаря:

  • высокой эффективности работы;
  • надежности;
  • простого устройства;
  • автономности работы (для функционирования требуется лишь создание давления).

Единственным же недостатком вакуумника можно считать только прекращение функционирования при остановке силового агрегата. Примечательно, что полный отказ усилителя происходит не сразу после прекращения работы мотора. Благодаря обратному клапану при остановке мотора в полостях сохраняется разрежение, поэтому узел еще способен выполнить свою функцию, но остаточного вакуума достаточно всего на 2-3 нажатия педали. Далее для срабатывания тормоза придется прилагать значительное усилие.

Влияние систем безопасности на конструкцию усилителя

Системы безопасности, которые сейчас активно внедряются в конструкцию авто, по большей части касаются тормозной системы, чтобы повысить ее эффективность.

Модернизация тормозов коснулась и усилителя. Многие автомобили сейчас оснащаются системой экстренного торможения, которая «дожимает» тормозную педаль, обеспечивая создание максимального давления на рабочих механизмах. И реализовать эту систему удалось доработкой конструкции вакуумника.

В устройство вакуумного усилителя тормозов добавили два новых элемента – датчик скорости перемещения штока цилиндра (датчик хода мембраны) и исполнительный механизм – электромагнитный привод. Работа системы контролируется электронным блоком.

устройство активного усилителя

Устройство активного вакуумника

Суть работы очень проста – при экстренном торможении водитель «бьет» по педали тормоза. Вакуумник срабатывает, и установленный датчик определяет быстрое перемещение штока. На основе сигнала от датчика ЭБУ подает импульс на исполнительный механизм – электромагнитный привод «дотягивает» мембрану, смещая шток, чтобы создать максимальное давление в приводе тормозов.

Следующим этапом в развитии узла стало создание так называемого активного усилителя. Такой вакуумник задействуется уже в системе стабилизации авто (ESP).

Читайте также  Торможение двигателем на механике

Активный усилитель отличается от обычного тем, что он может срабатывать без какого-либо участия водителя. ESP для своей работы использует ряд агрегатов и систем авто, включая и тормозную. В определенные моменты ESP для удержания авто на заданной траектории использует тормозные механизмы, и чтобы создать необходимое давление на них, в работу включается усилитель, причем самостоятельно.

Активный вакуумник для работы в автоматическом режиме использует те же составные элементы, что и система экстренного торможения – датчик и исполнительный механизм. Функционирование усилителя в таком режиме полностью контролируется электроникой.

Гидравлический и электрогидравлический усилители

Электрогидравлический усилитель работает совсем по другому принципу. Состоит он из насоса с приводом от электродвигателя, гидроаккумулятора, распределительного блока и главного тормозного цилиндра. В народе такой усилитель получил название гидроблока. У гидравлического же давление создается механическим насосом, который работает и на гидроусилитель руля.

электрогидравлический усилитель тормозов

Электрический вариант усилителя

Принцип работы усилителя тормозов этой конструкции такой – при включении зажигания, начинает работать насос, закачивая тормозную жидкость под давлением в аккумулятор. Во время торможения поршни главного цилиндра открывают каналы и жидкость под давлением из аккумулятора поступает сначала в полость перед поршнями, создавая дополнительное давление в приводе. В результате для срабатывания тормозных механизмов водителю нужно приложить значительно меньше усилия.

Электрогидравлический усилитель считается более эффективным, но из-за сложной конструкции широкого применения он не получил.

Будущее уже здесь

Самым последним созданным устройством является электромеханический усилитель iBooster от компании Bosch, он отвечает современным требованиям и может применяться в любых автомобилях. Особенно хорошо подходит для электромобилей и авто с системами автономного управления.

электронный усилитель

Электронный iBooster компании Bosch

Управляется собственным электронным блоком связанным с другими электронными системами, но при этом имеет прямую связь педали с тормозным цилиндром. Скорость работы iBooster очень высока, например он замедляет автомобиль в три раза быстрее чем система ESP.

Каждый из этих усилителей имеет свои достоинства и у производителей есть выбор, но прогресс требователен и скорее всего простые механизмы будут вытеснять более современные и производительные системы такие как iBooster.

5 симптомов неисправности вакуумной магистрали двигателя

Вакуумная магистраль двигателя внутреннего сгорания довольно редко фигурирует в списках неисправностей. Многие автомобилисты даже не подозревают о её существовании. Между тем, она может доставить немало неприятностей и стать причиной неуверенной работы мотора и тормозов. Рассказываем о типичных симптомах проблем в вакуумной магистрали ДВС.

Наличие вакуумной системы на автомобилях с двигателями внутреннего сгорания объясняется довольно просто. При работе мотора на такте впуска ДВС работает подобно поршневому насосу, создавая разрежение во впускном коллекторе. В картере мотора давление напротив возрастает (газы в небольшом количестве прорываются сквозь зазоры между поршнями и стенками цилиндров). Для уменьшения давления в картере предусмотрена система вентиляции, соединённая с впускным коллектором герметичным шлангом. Разрежение, возникающее в системе впуска, учитывается специальными датчиками и напрямую влияет на работу зажигания и на смесеобразование. Также возникающее в системе разрежение используется для уменьшения давления на педаль тормоза вакуумным усилителем тормозов. При нарушении работы вакуумной магистрали наблюдается множественные проблемы.

Нетрудно догадаться, что неисправности вакуумной системы связаны либо с сильным загрязнением шлангов, которые теряют способность пропускать воздух, либо напротив с их негерметичностью. Разрушение шлангов происходит по естественным причинам (срок службы резиновых изделий относительно мал) — под воздействием высокой температуры и агрессивной среды они ссыхаются, трескаются и рвутся, а изнутри загрязняются продуктами износа двигателя и распада масла. Негерметичность системы приводит к некорректной работе системы зажигания, неуверенной работе двигателя, проблемам с его пуском, снижению мощности и повышению расхода топлива.

1. Горит значок «Check Engine» на приборке

Работой двигателя любого современного автомобиля заведуют так называемые «мозги», считывающие информацию с множества датчиков. Данные о степени разрежения во впускном коллекторе и о расходе воздуха, поступающем в него извне, являются основополагающими для правильной работы мотора. Превышение или падение давления в системе приводит к переключению работы мотора на так называемый аварийный режим. Пиктограмма «Check Engine» может активироваться, в том числе, из-за неисправности вакуумной магистрали. Однако определить это точно можно лишь, подключив к бортовой системе специальный диагностический сканер. Если вы подозреваете, что проблема может быть связана с неправильной работой вакуумной системы, внимательно осмотрите все её шланги. Возможно, их замена решит проблему без визита к специалистам.

2. Неровно работает двигатель

Ещё одним симптомом неисправности является неустойчивая работа двигателя. Это может проявляться всевозможными троениями и провалами, хлопками в выхлопной трубе и вибрациями, передающимися на кузов. Обычно автомобиль сохраняет возможность самостоятельно перемещаться в пространстве, однако езда на нём перестаёт быть комфортной — машина дёргается на ходу. В большинстве случаев неисправность успешно нивелируется «мозгами» автомобиля. Однако двигатель может уйти в аварийный режим, что скажется, в том числе, на расходе топлива.

3. Падает мощность, мотор глохнет

Нарушение работы вакуумной системы нередко приводит к сильному падению мощности мотора или полной его неработоспособности. При загрязнении шланга вентиляции картера внутри двигателя возникает слишком большое давление, что приводит к выдавливанию прокладок и сальников, сильной детонации. При возникновении такой неисправности система защиты может отключить двигатель — автомобиль будет глохнуть. Падение мощности — ещё один симптом неисправности.

4. Возникают «отстрелы» в воздушный фильтр

Неисправность в вакуумной системе может оказывать критическое влияние на систему зажигания — горючая смесь воспламеняется невпопад и не сгорает полностью, что приводит к детонации прямо во впускном коллекторе или в воздушном фильтре. Это может приводить к механической поломке двигателя или системы впуска (нередко коробку с воздушным фильтром срывает с точек крепления, в особо тяжёлых случаях даже повреждается крышка капота).

5. Плохо работают тормоза

На большинстве современных автомобилей разрежение, возникающее во впускном коллекторе, помогает водителю на торможении. Вакуумный усилитель тормозов подсоединён к двигателю шлангом и значительно уменьшает давление, которое нужно прикладывать к педали тормоза. При негерметичности вакуумной магистрали усилитель тормозов теряет эффективность — давить на педаль тормоза приходится значительно сильнее.

Не стоит пренебрегать проверкой исправности нехитрого, но важного вакуумного контура. Это не требует от больших усилий и в большинстве случаев заключается в тщательном визуальном осмотре. Если вы заметили хотя бы один из названных признаков неисправности, проведите диагностику самостоятельно или обратитесь к специалистам.

Устройство и принцип работы вакуумного усилителя тормозов

Вакуумный усилитель является одним из неотъемлемых элементов тормозной системы автомобиля. Главное его предназначение – увеличение усилия, передаваемого от педали к главному тормозному цилиндру. За счет этого управление автомобилем становится более легким и комфортным, а торможение эффективным. В статье разберем, как работает усилитель, узнаем из каких элементов он состоит, а также выясним, можно ли без него обойтись.

Функции вакуумного усилителя

Внешний вид вакуумника

Основными функциями вакуумника (простонародное обозначение устройства) являются:

  • увеличение усилия, с которым водитель давит на педаль тормоза;
  • обеспечение более эффективной работы тормозной системы при экстренном торможении.

Дополнительное усилие вакуумный усилитель создает за счет возникающего разряжения. И именно это усиление в случае экстренного торможения автомобиля, двигающегося с большой скоростью, позволяет всей системе тормозов отработать с высоким КПД.

Устройство вакуумного усилителя тормозов

Конструктивно вакуумный усилитель представляет собой герметичный корпус округлой формы. Он устанавливается перед тормозной педалью в моторном отсеке. На его корпусе располагается главный тормозной цилиндр. Существует еще одна разновидность устройства – гидровакуумный усилитель тормозов, который включен в гидравлическую часть привода.

Устройство и вид вакуумника в разрезе

Вакуумный усилитель тормозов состоит из следующих элементов:

  1. корпус;
  2. диафрагма (на две камеры);
  3. следящий клапан;
  4. толкатель педали тормоза;
  5. шток поршня гидроцилиндра тормозов;
  6. возвратная пружина.

Корпус устройства разделен диафрагмой на две камеры: вакуумную и атмосферную. Первая расположена со стороны главного тормозного цилиндра, вторая – со стороны педали тормоза. Через обратный клапан усилителя вакуумная камера соединена с источником разряжения (вакуума), в качестве которого на автомобилях с бензиновым двигателем используется впускной коллектор перед подачей топлива в цилиндры.

Внешний вид электрического насоса

В дизеле же источником разряжения служит электрический вакуумный насос. Здесь разряжение во впускном коллекторе незначительное, поэтому насос является обязательным элементом. Обратный клапан вакуумного усилителя тормозов разъединяет его с источником разряжения при остановке двигателя, а также в случае, при котором вышел из строя электровакуумный насос.

Читайте также  Воздух в системе охлаждения двигателя

Диафрагма соединена со штоком поршня главного тормозного цилиндра со стороны вакуумной камеры. Ее движение обеспечивает перемещение поршня и нагнетание тормозной жидкости к колесным цилиндрам.

Атмосферная камера в исходном положении соединена с вакуумной камерой, а при нажатой педали тормоза – с атмосферой. Сообщение с атмосферой обеспечивает следящий клапан, перемещение которого происходит при помощи толкателя.

В конструкцию вакуумника в целях увеличения эффективности торможения в экстренной ситуации может быть включена система экстренного торможения в виде дополнительного электромагнитного привода штока.

Принцип работы вакуумного усилителя тормозов

Работает вакуумный усилитель тормозов за счет разного давления в камерах. При этом в исходном положении давление в обеих камерах будет одинаковое и равное давлению, создаваемому источником разряжения.

При нажатии на педаль тормоза толкатель передает усилие к следящему клапану, который перекрывает канал, соединяющий обе камеры. Дальнейшее движение клапана способствует соединению атмосферной камеры через соединяющий канал с атмосферой. Вследствие чего разряжение в камере снижается. Разница давления в камерах перемещает шток поршня главного тормозного цилиндра. Когда торможение заканчивается, камеры вновь соединяются и давление в них выравнивается. Диафрагма под действием возвратной пружины занимает свое исходное положение. Вакуумник работает пропорционально силе нажатия на тормозную педаль, т.е. чем сильнее водитель будет нажимать на педаль тормоза, тем эффективнее будет работать устройство.

Датчики вакуумного усилителя

Датчик хода мембраны для экстренной системы торможения

Эффективную работу вакуумного усилителя с наиболее высоким коэффициентом полезного действия обеспечивает пневматическая система экстренного торможения. В состав последней входит датчик, измеряющий скорость перемещения штока усилителя. Он расположен непосредственно в усилителе.

Также в вакуумнике присутствует датчик, определяющий степень разряжения. Он предназначен для сигнализации о недостатке вакуума в усилителе.

Заключение

Вакуумный усилитель тормозов является незаменимым элементом тормозной системы. Без него обойтись, конечно, можно, но не нужно. Во-первых, придется тратить больше усилия при торможении, возможно, даже придется жать на педаль тормоза двумя ногами. А во-вторых, езда без усилителя небезопасна. В случае экстренного торможения может просто не хватить тормозного пути.

Принцип работы вакуумного усилителя тормозов

Как устроен вакуумный усилитель тормозов автомобиля

Современный вакуумный усилитель является основным и неотъемлемым элементом тормозной системы автомобиля.

Основным предназначением считается увеличение усилия, которое передается от педали до тормозного цилиндра.

Благодаря такой слаженной работе, управление автомобилем становится комфортным, легким, а сам процесс торможения более эффективным.

Как устроен вакуумный усилитель?

Если говорить в общем, о конструкции вакуумника, то это герметический корпус, зачастую круглой формы (если смотреть в торец).

Как правило, он располагается в моторном отсеке, в районе педали тормоза.

Именно на корпусе вакуумника чаще всего располагают основной цилиндр тормозной системы.

Менее распространенным считается гидровакуумный усилитель тормозной системы. Он включен непосредственно в гидравлическую часть привода.

Схема устройства обычного вакуумного усилителя тормозной системы

  1. Диафрагма;
  2. Атмосферный канал;
  3. Толкатель;
  4. Поршень клапана;
  5. Вакуумный канал;
  6. Шток;
  7. Возвратная пружина.

В зависимости от типа топлива, строение вакуумного усилителя будет отличаться.

Так, для бензинового агрегата источником разряжения вакуума служит впускной коллектор, перед подачей топлива в цилиндры.

Если говорить о дизельном двигателе, то в качестве системы разряжения вакуума служит специальный электрический вакуумный насос. Само разряжение вакуума в дизеле (во впускном коллекторе) незначительное, поэтому электрический насос является обязательным элементом.

Принцип работы

Основой для работы вакуумного усилителя считается разница в давлениях.

В исходном положении давление в камерах будет одинаковое, что так же равняется давлению источника разряжения.

Весь процесс работы вакуумника начинается с нажатия на педаль тормоза. Толкатель в усилителе передает данное ему усилие на следующий клапан, тот в свою очередь перекрывает канал, который соединяет две камеры. Теперь камеры наглухо разделены на атмосферную камеру и вакуумную. Если клапан движется дальше, то в таком случае атмосферная камера соединяется непосредственно с атмосферой. Как результат, разряжение в камере снижается.

За счет смены давления в камерах, шток поршня, главного тормозного цилиндра начинает перемещаться.

Когда тормозная система отработала задачу и торможение прекращается за счет отпускания педали тормоза, клапан возвращается в исходное положение, а давление в камерах выравнивается (камеры соединяются между собой).

Благодаря возвратной пружине, диафрагма возвращается в исходное положение.

Вся работа вакуумного усилителя пропорциональна, то есть, чем сильней Вы давите на педаль тормоза, тем сильнее будут срабатывать тормоза автомобиля.

Устройство вакуумного усилителя тормозов

Вакуумный усилитель имеет достаточно простую конструкцию. Он объединен с главным тормозным цилиндром в единую систему, в которой усилитель играет роль «передатчика» усилия от педали тормоза.

Сам усилитель представляет собой цилиндрический корпус, внутренний объем которого при разделен диафрагмой на две герметичные камеры: вакуумную и атмосферную. Вакуумная камера расположена со стороны тормозного цилиндра и соединена с его поршнем при помощи штока. Также в вакуумной камере располагается обратный клапан, препятствующий росту давления при заглушенном двигателе.

Атмосферная камера расположена со стороны педали тормоза. В атмосферной камере расположен следящий клапан, соединенный при помощи толкателя с педалью тормоза. Именно следящий клапан играет основную роль в усилителе — его движение позволяет атмосферной камере сообщаться либо с вакуумной камерой, либо с атмосферой.

Принцип действия

Для полноценной работы вакуумного усилителя тормоза ему необходим вакуум. Он создается путем подсоединения усилителя к впускному коллектору либо работой специального насоса. У дизельных автомобилей работу усилителя всегда обеспечивает насос, у бензиновых встречаются оба варианта.

Вакуумный усилитель имеет пневматический принцип работы и использует разницу давлений в камерах, разделенных диафрагмой. В момент, когда педаль тормоза отжата, давление в атмосферной и вакуумной камерах усилителя одинаково низкое, так как обе камеры имеют сообщение через вакуумный канал в диафрагме.

После нажатия водителем педали тормоза усилие, созданное водителем, передается на следящий клапан. Клапан постепенно перекрывает вакуумный канал и открывает атмосферный в атмосферной камере. В результате давление в атмосферной камере превышает давление в вакуумной, благодаря чему диафрагма начинает двигаться в сторону тормозного цилиндра. Из-за разницы давления диафрагма создает усилие на шток цилиндра, в несколько раз превышающее усилие при нажатии педали тормоза водителем. Следящий клапан устроен так, что чем больше усилие придает водитель нажатию на педаль тормоза, тем больше воздействие клапана на поршень тормозного цилиндра.

Если после нажатия педали тормоза водитель останавливает воздействие (удерживает ступню ноги в определенном положении), то останавливается и движение диафрагмы и непосредственно само усиление тормоза. Реагируя на силу нажатия педали, вакуумный усилитель тормозов может увеличить воздействие тормозной силы, уменьшить его или оставить на существующем уровне. Таким образом работа вакуумного усилителя тормозов полностью подконтрольна водителю.

После того, как педаль тормоза отжата водителем, происходит обратный процесс. Следящий клапан вновь закрывает атмосферный канал и открывает вакуумный. Разница давления в атмосферной и вакуумной камерах усилителя тормозов исчезает, диафрагма и поршень тормозного цилиндра возвращаются на свои первоначальные места под воздействием возвратной пружины, расположенной в корпусе усилителя.

Работа усилителя не зависит от того, заглушен или заведен мотор. Его постоянную работу обеспечивает обратный клапан, который препятствует росту давления в камере.

Особенности эксплуатации вакуумного усилителя тормозов

Так как вакуумный усилитель тормозов использует разницу между атмосферным давлением и давлением в вакуумной камере, то большое значение имеет давление окружающего воздуха.

В вакуумной камере создается давление порядка 0,067 МПа, что примерно в 1,4 раза меньше обычного атмосферного давления.

В условиях стандартной высоты над уровнем моря сохраняется примерно такое соотношение.

С повышением высоты эффективность работы вакуумного усилителя тормозов постепенно снижается.

На уровне свыше 3,5 км над уровнем моря давление окружающего воздуха и давления в вакуумной камере сравняются, а усилитель тормозов просто не будет работать. Поэтому на технике, работающей в условиях высокогорья, используют усилители тормозов иной конструкции, не зависящие от внешнего атмосферного давления.

Понравилась статья? Поделиться с друзьями: