Двигатель для вентилятора
Двигатель для вентилятора
Электродвигатели для вентиляции
Здесь Вы найдете электродвигатели марки Vilmann разной мощности от 1000 об/мин — 3000 об/мин. Все аппараты имеют сертификат соответствия и гарантийное обслуживание. Мы работаем с поставщиками данной фирмы, поэтому цены на данную продукцию минимальные.
Двигатель Vilmann Z 100L2-4 3 кВт 1500 об/мин
Двигатель Vilmann Z 100L2-4 3 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3
Двигатель Vilmann Z 112M-2 4 кВт 3000 об/мин
Двигатель Vilmann Z 112M-2 4 кВт 3000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3 д
Двигатель Vilmann Z 112M-4 4 кВт 1500 об/мин
Двигатель Vilmann Z 112M-4 4 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3 д
Двигатель Vilmann Z 112M2-2 5,5 кВт 3000 об/мин
Двигатель Vilmann Z 112M2-2 5,5 кВт 3000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У
Двигатель Vilmann Z 112M2-4 5,5 кВт 1500 об/мин
Двигатель Vilmann Z 112M2-4 5,5 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У
Двигатель Vilmann Z 132M-4 7,5 кВт 1500 об/мин
Двигатель Vilmann Z 132M-4 7,5 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3
Двигатель Vilmann Z 132M2-4 11 кВт 1500 об/мин
Двигатель Vilmann Z 132M2-4 11 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3
Двигатель Vilmann Z 132M2-6 5,5 кВт 1000 об/мин
Двигатель Vilmann Z 132M2-6 5,5 кВт 1000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У
Двигатель Vilmann Z 132S-6 3 кВт 1000 об/мин
Двигатель Vilmann Z 132S-6 3 кВт 1000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У3 д
Двигатель Vilmann Z 132S2-2 7,5 кВт 3000 об/мин
Двигатель Vilmann Z 132S2-2 7,5 кВт 3000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное исполнение У
Двигатель Vilmann Z 160L-4 15 кВт 1500 об/мин
Описание двигателей Vilmann Z 160L-4 15 кВт 1500 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное испол
Двигатель Vilmann Z 160L-6 11 кВт 1000 об/мин
Описание двигателей Vilmann Z 160L-6 11 кВт 1000 об/мин Асинхронные двигатели общепромышленного назначения изготавливаются в основном (базовом) исполнении: IM 1001 (IM B3) монтажное испол
Электродвигатели для систем вентиляции
Одним из основных элементов системы вентиляции являются электродвигатели, которые способствуют движению воздушных масс. Их установка не просто оптимизирует вентиляционную систему, а обеспечивает передвижение потока воздуха на большое расстояние. В зависимости от положения электрического двигателя и размера его лопастей может регулироваться направление воздушной массы.
Основные виды
Выбор конкретной модели электродвигателя для вентиляции зависит от мощности вентиляционной установки и производственного назначения помещения, где планируется установка оборудования. Различают три основных типа электроприводов.
- Трехфазные модели. Конструктивной особенностью оборудования является возможность применения источника питания от трех фазной сети переменного тока. Главным элементом конструкции считается статор с тремя обмотками. Они и образуют магнитные поля. Высокие показатели мощности позволяют при скорости до 3 тыс. оборотов в минуту развивать мощность до тысячи кВт.
- Электроприводы постоянного тока. К данной категории группы продукции относятся коллекторные, универсальные коллекторные и бесколлекторные (бесщеточные). ДПТ подразделяются на две категории: с самовозбуждением и с независимым возбуждением.
- Двигатели переменного тока классифицируются по конструкции ротора и по количеству фаз. Технически данная модель подразделяется на асинхронные и синхронные типы.
Для увеличения срока эксплуатации и улучшения производительности, в конструкции агрегатов предусмотрена высокоэффективная система охлаждения. Все электродвигатели известного бренда изготовлены по европейским стандартам и соответствуют нормам энергоэффективности. Все модели изготовлены в закрытом обдуваемом исполнении.
Применение
Электродвигатель для систем вентиляции имеет широкий спектр применения. Усовершенствование оборудования позволяет достойно занимать продукции ведущие позиции на рынке. Они применяются для промышленного и бытового назначения в качестве привода для вентиляционных систем.
Оборудование широко применяется во всех отраслях производственной деятельности в качестве компрессорной установке:
- Химической промышленности.
- На нефтеперерабатывающих предприятиях.
- Горнодобывающее производство.
- Для организации производственной деятельности компаний, занятых в пищевой отрасли.
Необходимо учитывать, что установка всех моделей для вентиляции допустима во всех климатических регионах. Работа оборудования в постоянном режиме допускается в любых помещениях, вне зависимости от направления деятельности. Установка агрегатов возможна и при наличии в помещении взрывоопасных веществ. Оборудование активно используется в целях бытового применения. Электрические двигатели являются источником шума. Однако современная комплектация позволяет работать им с нормальным уровнем излучаемой звуковой мощности. В рабочем режиме, шум работы устройства не превышает указанные в паспорте показатели.
Основные достоинства моделей
В связи с усилением роли энергосберегающего фактора и вопроса экономии энергоносителей, в бытовом и производственном применении оборудования вентиляционных систем, особую роль уделяют частотному регулированию приводов. Для эффективной работы системы вентиляции могут применяться одновременно несколько электродвигателей. Такая задача ставиться с целью увеличения потока воздухообмена и улучшить стандартный показатель. Поскольку сам двигатель постоянно подвергается воздействию внешней среды (пыль, влага, перепады температуры), производитель уделяет этому факту особое внимание. Поэтому все модели комплектуются термодатчиками и обеспечивают надежную защиту от перегрева обмоток статора.
Современный рынок электрооборудования представлен широким ассортиментом продукции. Многие производители постоянно расширяют свое производство и предлагают новые, высококачественные устройства. В числе основных преимуществ электродвигателей для вентиляционных систем, стоит выделить:
- Широкий круг применения для установки в различных системах вентиляции. Модели одинаково востребованы, как для производственных, так и для бытовых целей.
- Они рассчитаны на работу в самых сложных климатических условиях, без ущерба для производственной мощности установки.
- Пониженный уровень тепловыделения. Помимо низкого уровня шума, механизмы не выделяют дополнительной температуры и не влияют на общий температурный режим любого помещения.
- Компактность и удобство габаритов не составляет дополнительных проблем при установке.
- Даже при малых оборотах высокий КПД,
- Длительный срок эксплуатации.
- Соответствие заявленным характеристикам.
- Вне зависимости от скорости работы, отмечается экономичность в потреблении электроэнергии.
- Доступная стоимость и выгодные условия сотрудничества.
Чтобы оформить заявку на поставку продукции, достаточно корректно заполнить заявку на официальном сайте поставщика. Вопросы по сотрудничеству решаются оперативно, дистанционно и выгодно для клиента!
Устройство тангенциальных вентиляторов
Назначение и применение тангенциального вентилятора
Внутрипольные конвекторы, электрокамины, фанкойлы, тепловые завесы, дровяные печи, внутренние блоки сплит-систем – все эти устройства требуют наличия компактных вентиляторов с высокой производительностью и малой скоростью воздушного потока.
Именно такими являются тангенциальные вентиляторы, которые активно используются в установках, где напор воздуха не является важным критерием. Их отличительной особенностью является высокий расход воздуха, подача равномерного потока и низкие шумовые характеристики.
Конструкция вентилятора
Вентилятор оснащен длинной крыльчаткой «беличье колесо», полой в центре, выполненной в виде продолговатого цилиндра. Крыльчатка установлена в корпус в виде диффузора, напоминают радиальное колесо. Забор воздуха осуществляется по всей длине вентилятора с фронтальной стороны.
Разновидности устройства
Различают вентиляторы по диаметру и длине крыльчатки, а также по количеству самих крыльчаток. Кроме того, вентиляторы могут отличатся по типу установленного двигателя (АС или ЕС) и рабочему напряжению 12/24 или 220В.
Рис.2 – Разновидности вентиляторов
Рис.3 – Принцип работы: прохождение потока через устройство
Особенности рабочего цикла и принцип действия
Принцип работы заключается в том, что поступающий воздух затягивается лопатками и направляется к диффузору, который задает требуемый вектор. Таким образом, поток движется вдоль периферии вращающейся части двигателя и стремится к выходу, где воздух скапливается в корпусе и поступает к нагнетательному диффузору. Воздушный поток проходит по внешнему диаметру рабочего колеса и 2 раза сквозь крыльчатку по направлению радиуса.
Рис.4 – Принцип работы: 1 – входное отверстие, 2 – рабочее колесо, 3 – выходной диффузор.
Спецификация тангенциального вентилятора
На рисунке ниже представлен чертеж тангенциального вентилятора, на примере модели QL100.
Рис.5 – Габаритные размеры вентилятора QL100
Характеристические кривые
Кривые производительности тангенциального вентилятора указаны на диаграмме на примере двух моделей QL80 и QL100.
Рис.6 — График производительности
По шкале Y отмечено максимальное противодавление, по шкале X – расход воздуха в час для каждой модели соответственно.
Схема подключения и разъемы
Рис.7 – Схема подключения вентиляторов QL80 и QL100
Технические параметры
Ознакомимся с техническими характеристиками на примере агрегата QL80.
QL80 – это тангенциальный вентилятор с ЕС-двигателем, имеет следующие параметры:
Подбор тангенциального вентилятора
Компанией ebm-papst представлен широкий ассортимент устройств, отличающихся между собой модельным рядом, комплектацией, техническими характеристиками. При выборе агрегата под определенные требования решающими факторами являются:
Критерии выбора | Характеристика |
---|---|
Условия эксплуатации | Номинальное напряжение, частота сети электропитания |
Производительность | Воздушный поток, уровень шума, КПД, сопротивление |
Окружающая среда | Условия эксплуатации, степень защищенности, эксплуатационный период, режим работы, габариты, положение установки и т.д. |
Квалифицированный специалист компании поможет подобрать оптимальный вариант, удовлетворяющий требованиям клиента.
Сферы применения тангенциальных вентиляторов
Работа прибора отличается низким уровнем шума что позволяет применять его повсеместно.
отопительная техника –внутрипольные конвекторы, тепловые завесы, фанкойлы
системы кондиционирования – испарители, сплит-систем
офисные установки – принтеры, копировальные аппараты
бытовая техника – встраиваемые духовки, посудомоечные машины
промышленные устройства – очистка с/х продукции, различного типа сушилки, установки для обогрева помещений или охлаждения
Электродвигатель вентилятора кондиционера
Двигатель вентилятора в сплит-системе устанавливается и во внутреннем, и в наружном блоке. На фото представлены двигатель внутреннего блока кондиционера настенного, кассетного и канального типа, электродвигатель вентилятора внешнего блока, а также, моторчик жалюзи.
Корпус электродвигателя вентилятора внутреннего блока, как правило, выполнен из прочного пластика и неразборный, двигатель вентилятора наружного блока имеет металлический корпус и может быть разобран для проведения ремонтных работ.
Электродвигатели имеют несколько обмоток. Подавая питание на разные обмотки, получаем соответственно различные скорости вращения вентилятора. В недорогих моделях используются 3-х-скоростные двигатели вентилятора внутреннего блока. В премиальных моделях диапазон фиксированных скоростей существенно расширен. Скорость воздушного потока в кондиционерах DAIKIN может регулироваться автоматически, в зависимости от разницы между заданной и комнатной температурой. Это выполняется с помощью системы фазового регулирования и интегральной схемы Холла. Фазовое управление и управление скоростью вентилятора включает 9 ступеней: LLL, LL, SL (тихая работа), L, ML, M, MH, H и HH (эффективная работа).
В последнее время в основном применяются инверторные электродвигатели. Скорость вращения DC-inverter двигателя вентилятора плавно регулируется изменением амплитуды постоянного напряжения.
В различных блоках и у разных производителей электродвигатели отличаются габаритами, посадочными уплотнительными резинками, присоединительными разъемами и крепежными отверстиями. Поэтому на практике заменяемость двигателей, применяемых в кондиционерах различных марок, вызывает множество проблем.
Неисправности электродвигателя вентилятора кондиционера
К наиболее распространенным неисправностям электродвигателей относятся, во-первых, межвитковое замыкание или обрыв обмотки двигателя вентилятора. Во-вторых, это механическое заклинивание, вызванное образованием ржавчины или деформацией оси. Посторонний шум, небольшой люфт вала двигателя говорит об износе подшипников. Кроме того, отмечается отказ сенсоров — датчика температуры или датчика Холла.
Датчик Холла электродвигателя кондиционера датчики Холла — приборы, измеряющие напряжённость магнитного поля на основе эффекта Холла. , как правило, вентилятора внутреннего блока контролирует скорость его вращения. Если электродвигатель в первые минуты после включения не набирает заданные обороты, это диагностируется как неисправность и кондиционер отключится с ошибкой «отказ FAN MOTOR». В данном случае следует проверить и собственно датчик Холла. На практике были случаи, например, когда модуль просто отклеивался. После приклеивания датчика на место неисправность устранялась.
В ходе диагностики электродвигателя обратите внимание не только на соответствие емкости пускового конденсатора номиналу, но и на целостность разъемов и надежность крепления проводов.
Если кондиционер доработан зимним комплектом, то внесены изменения в схему управления электродвигателем внешнего блока. Проверьте работоспособность устройства зимнего пуска перед тем, как забраковать мотор вентилятора. Или отключите зимний комплект кондиционера на время диагностики электродвигателя.
Во внешнем блоке, как правило, имеется схема контроля параметров питания. Поскольку ее отказ воспринимается как неисправность электродвигателя, в ходе диагностики проверяется и сама схема контроля параметров питания.
Схема электродвигателя
Принципиальная электрическая схема двигателя постоянного тока YDK65-6-9024.
На схеме обозначены: M — основная обмотка; A1, A2, A3 — вспомогательная обмотка; C — конденсатор; P — высокотемпературная защита.
Проверьте мультиметром сопротивление обмоток электродвигателя. К примеру, для двигателя YDK65-6-9024 сопротивление обмотки при 20°C должно быть для M = 83,0 Ω; A1 = 23,4 Ω; A2 = 14,0 Ω; A3 = 63,5 Ω.
Электродвигатель вентилятора неисправен, если сопротивление основной обмотки стремится к нулю (короткое замыкание) или ∞ (разомкнута цепь управления). При замере не касайтесь токоподводящих кабелей электродвигателя. А также, не присоединяйте и не отсоединяйте разъемы электродвигателя при включенном питании.
При демонтаже-монтаже ставьте двигатель на твердые поверхности с соблюдением должных мер предосторожности, избегайте резких перемещений и ударов. Такие удары могут привести к неисправности кондиционера, которая может оставаться незамеченной на протяжении определенного интервала времени. Но при обнаружении данной неисправности в будущем, такая халатность автоматически ведет к аннулированию гарантии производителя.
Схема подключения электродвигателя
Схема подключения электродвигателя вентилятора кондиционера есть в инструкции по установке, а также, в сервис-мануале на оборудование. Этикетка с электрической схемой, как правило, приклеивается изнутри на крышку внешнего блока сплит-системы.
Мотор (электродвигатель) вентилятора кондиционера: разновидности и причины неполадок
Тип двигателя кондиционера влияет на мощность и громкость работы устройства, а также на расход энергии. Есть несколько типов моторов: коллекторный, асинхронный и инверторный. Зная их плюсы и минусы, потребителю будет легче определиться с выбором.
Коллекторный тип двигателя
Коллекторный электродвигатель кондиционера обладает большим пусковым крутящим элементом без специальных модификаций. Его просто настраивать, за что в прошлом он был популярен у производителей бытовой техники.
С развитием технологий коллекторный двигатель стал менее востребованным по нескольким причинам:
- Максимальная производительность составляет 40 тыс. оборотов в минуту. Для кондиционера этого мало. К примеру, такое количество оборотов сопоставимо с работой центробежной соковыжималки.
- Коллекторные двигатели не терпят агрессивную среду, что в городских условиях эксплуатации быстро приводит устройство к поломке.
Асинхронный тип двигателя
Сам по себе асинхронный двигатель обладает слабыми пусковыми характеристиками, из-за чего требуется большое количество электроэнергии для его полноценного запуска. Применение в кондиционерах нерационально.
Конструкторы пробовали решить проблему. Однако повышенная мощность асинхронного двигателя требовала усиленного охлаждения, что опять вело к большим затратам энергии. Регулировочную характеристику ухудшало повышение активного сопротивления ротора.
Инверторный тип двигателя
В зависимости от тепловой нагрузки в помещении автоматически регулируется скорость вращения мотора компрессора. Она переходит в форсированный режим до тех пор, пока не будет достигнута установленная пользователем температура.
Достигнув заданных значений, двигатель вентилятора кондиционера снижает скорость, при этом поддерживается нужная температура. Это позволяет экономить электроэнергию, так как не происходит постоянного включения и выключения компрессора.
Кондиционеры, работающие по типу включения компрессора для достижения нужной температуры, а затем его выключения, быстрее изнашиваются. Это связано с тем, что при запуске первые секунды устройство работает без смазки, так как масло из компрессора стекает в картер.
Принцип работы
Использование блока силовой электроники позволяет инверторному двигателю выполнять два последовательных действия.
Сначала образуется постоянный ток за счёт сетевого переменного напряжения. Затем переменный ток необходимой частоты формируется из получившегося постоянного напряжения.
Силовой инверторный блок, как и любой другой преобразователь, имеет менее 100% КПД. При долгой беспрерывной работе на максимальной скорости кондиционер с инверторным типом двигателя потеряет около 10-15% эффективности по сравнению с устройствами другого типа.
Инверторный кондиционер после достижения указанной температуры работает в режиме сниженной мощности компрессора, а другие типы двигателей используют цикличный режим.
Неинверторный кондиционер во время начала работы испытывает максимальную нагрузку во время переходных процессов: как электромеханических, так и термодинамических.
Ротор требует полной отдачи от всех механизмов, при этом им требуется перекачать до 50% фреона в зону высокого давления из зоны низкого давления. Во время всех этих процессов холод ещё не начинает вырабатываться.
Достигнув нужных показателей, система через дросселирующее устройство выравнивает давление в верхней и нижней зонах.
Кипение фреона может происходить в тех частях кондиционера, где он не требуется: ресивер, капиллярная трубка, магистраль. Это связано с тем, что давление во время запуска слишком высокое.
Холод некоторое время используется не по назначению: идёт охлаждение компрессионного отсека, внешнего блока и т.п. В результате производительность снижается.
Почему стоит выбрать инверторный кондиционер
Следует выделить положительные и отрицательные стороны инверторного кондиционера.
- более продолжительный срок службы по сравнению с моторами других типов: 8-12 лет против 6-9 лет;
- при правильной установке мощности кондиционера возможна значительная экономия электроэнергии без ущерба для комфорта;
Положительных сторон у инверторного двигателя внутреннего блока кондиционера много, однако есть и минусы, которые следует учитывать:
- длительный ремонт в случае поломки из-за частого отсутствия деталей на рынке; иногда ожидание нужной запчасти затягивается на несколько месяцев;
- при длительной эксплуатации без выключения начинается повышенное потребление электроэнергии;
- в связи со сложностью электронных устройств, используемых в начинке двигателя, он чувствителен к резким скачкам напряжения и может из-за них выйти из строя;
- кондиционеры с инверторным типом двигателя стоят дороже других систем для охлаждения и нагрева воздуха.
Причины неполадок
Мастера по ремонту кондиционеров выделяют несколько возможных вариантов, из-за которых случаются неполадки:
- При люфте вала двигателя или нехарактерных шумах следует поменять подшипники.
- Если двигатель перестал вращаться, потребуется сменить пусковые конденсаторы.
- В случае, когда мотор вентилятора кондиционера останавливается через несколько секунд после запуска – неисправен датчик Холла. Этот электронный модуль отвечает за экстренное отключение двигателя в случае неполадок, предотвращая его поломку.
Самостоятельно браться за работу, если нет специальных знаний, не стоит. Следует доверить дело мастеру.
Подбор двигателя вентилятора кондиционера
В сплит-системе двигатель находится как в наружном, так и во внутреннем блоке. Двигатель вентилятора наружного блока кондиционера делается из металла, а внутреннего – из прочного пластика.
- Много-обмоточный: разная скорость вращения вентилятора получается за счёт подачи энергии на различные обмотки.
- DC-inverter – чаще всего применяется в инверторных двигателях. За счёт изменения амплитуды постоянного напряжения регулируется скорость вращения.
- PG-motor – с помощью регулирующего элемента (симистор или тиристор) подаётся напряжение через обмотку, состоящую из двух частей. Разные скорости вращения вентилятора достигаются благодаря изменению амплитуды управляющего напряжения.
Вооружившись знаниями, пользователь сможет легко выбрать двигатель для кондиционера и вовремя обнаружить неполадки в системе.
Как сделать радиальный вентилятор для вытяжки мастерской из фанеры и двигателя стиралки
Очистка воздуха в столярной мастерской или небольшом цеху по обработке камня промышленными системами аспирации требует немалых вложений. Для крохотного производства, гаража и домашней мастерской вентиляцию можно сделать за пару часов, потратив пару десятков долларов. Практически все материалы и инструменты найдутся на полках у большинства столяров.
Что понадобится
- электродвигатель от стиральной машины: мощностью – 600 Вт с конденсатором, с частотой вращения вала – 1600 об/мин;
- четыре листа фанеры с габаритами 400×400 мм толщиной 19 мм;
- пара листов фанеры с размерами 300×300 мм толщиной
- болгарка (УШМ) с наждачным шлифовальным кругом зернистостью 80-100 грит;
- карандаш, линейка и циркуль;
- ножницы для резки листового металла;
- дрель или шуруповерт со свёрлами по металлу и битой под саморезы;
- ручной фрезерный станок по дереву, желательно встроенный в стол;
- прямая пазовая фреза;
- шлифовальная шкурка;
- деревянный или резиновый молоток (киянка);
- столярный клей и струбцины;
- циркулярная пила.
Процесс изготовления вытяжного вентилятора из доступных материалов
Вал двигателя освобождается от гаек, шкивов, заглушек, фланцев и прочих приспособлений. Из фанеры размерами 400×400 мм при помощи ручного фрезера по дереву с применением универсального фрезерного стола вырезается круг диаметром 250 мм.
Внутри делается отверстие диаметром, равным диаметру крыльчатки двигателя (50 мм).
Из обрезков вырезается круг диаметром на 1-2 мм меньше отверстия, чтобы свободно в него входил.
Сверлятся отверстия для крепления электродвигателя, затем – насверливаются зенкером или толстым сверлом на пару миллиметров, чтобы спрятать шапки болтов. Мотор привинчивается к фанере.
К кругу приклеивается цилиндр поменьше такой высоты, чтобы они вместе закрывали вал мотора.
Внутри сверлится отверстие по диаметру равное толщине вала. Конструкция аккуратно напрессовывается на вал через деревянную проставку, чтобы не расколоть, не повредить.
Из остатков фанеры и второго листа вырезаются две одинаковые «гитары» – будущий корпус воздухоочистителя.
Из тонких листов фанеры вырезается два круга диаметром чуть меньше, чем прежде – около 230 мм.
На одном из них фрезеруются глухие радиальные пазы фрезой 6 мм глубиной 3-5 мм. В данном случае 8 штук.
Получится турбина, аналогичная используемой в пылесосе.
При помощи ручной или стационарной циркулярной пилы из тонкой фанеры нарезаются прямоугольники. Их длина превышает длину пазов на пару миллиметров, ширина – 58 мм.
Рёбра между боковыми гранями, которыми детали вставляются в пазы, шлифуются под наклоном. Эти спуски упростит установку лопастей в пазы. При шлифовке нужно следить, чтобы пальцы не оказались под наждачной шкуркой. Пазы смазываются столярным клеем, в них впрессовываются все детали.
Второй круг кладётся соосно нижнему, и конструкция придавливается грузом для склейки.
После высыхания внутри основы турбины высверливается воздухозаборник радиусом 43 мм. В центре второго круга диаметром 230 мм коронкой высверливается отверстие диаметром, равным толщине меньшего цилиндра на валу двигателя.
Конструкция надевается на двигатель и привинчивается шурупами через заранее засверленные отверстия.
Мотор запускается, и фанера выравнивается при помощи наждачной шкурки или болгарки с ней в качестве насадки с соблюдением мер предосторожности. Верхний круг приклеивается к лопастям. Конструкция закрепляется при помощи струбцин. К ней приспосабливается УШМ с наждачным кругом либо шлифмашинка.
Если лопасти сильно выпираются за пределы кругов, их нужно аккуратно обрезать ручной пилой с запасом в пару миллиметров.
Мотор запускается вместе со шифровальным инструментом для выравнивания кромок и центрирования турбины для минимизации вибраций.
То же делается для выравнивания верхней поверхности. В верхней «гитаре» проделывается отверстие, равное диаметру круга с электромотором, чтобы тот плотно входил. В нижней «гитаре» вырезается воздухозаборник радиусом 43 мм.
От куска листовой стали отрезается полоса высотой 110 мм, равная по длине окружности «гитары» с запасом.
По ширине загибается на показанную длину.
На расстоянии 10-15 мм от края по длине листа кернятся места завинчивания саморезов через каждые 40-50 мм.
Они проектируются на противоположный край полоски при помощи угольника или его аналога. Во избежание щелей по периметру соприкосновения металла с фанерой клеится малярный скотч. Металл привинчивается к нижней части основания.
С нижней стороны крышки сверлится 4 отверстия диаметром 5-6 мм на расстоянии
7-8 мм от края, в них вкручиваются болты М5 либо М6. При помощи деревяшек высотой 81 мм крышка устанавливается на место.
Затем – привинчивается саморезами по металлу. Лишний металл отрезается.
На место вставляется блок с двигателем. На болты надеваются шайбы и навинчиваются барашки для фиксации блока внутри устройства. Конструкцию можно тестировать. После успешного старта – подключать к воздуховоду для отвода грязного воздуха и инструменту через переходники.
Не стоит волноваться, если устройство придётся пару раз разобрать для наклейки второго слоя уплотнителя между фанерой и металлом, дополнительной шлифовки для устранения вибрации. Для двигателя желательно сделать защитный кожух из дерева или листовой стали, а его контакты изолировать до проведения первого запуска.
Смотрите видео
Схемы подключения и выбор регулятора скорости вращения вентилятора: обзор лучших моделей и их стоимость
Вентилятор очень часто используется во многих бытовых приборах. Чтобы этот аппарат прослужил долго, применяется регулятор скорости вращения вентилятора. Он помогает установить нужную скорость вращения лопастей. Этот прием снижает шум прибора и продлевает срок его службы.
Что из себя представляют регуляторы скорости вращения вентилятора?
Регулятор скорости (его еще называют контроллер) помогает снизить обороты, когда это необходимо, либо увеличить их. По существу, он изменяет напряжение, подающееся на устройство. Этот небольшого размера прибор подсоединяется к оборудованию по специальной схеме.
Зачем нужен?
Если вентилятор постоянно работает на максимальной мощности, это уменьшает срок его службы. Прибор быстро изнашивается и ломается.
Функции регулятора скорости вращения:
- уменьшение износа механизмов,
- снижение шума,
- экономия электроэнергии.
Как работает: принцип действия и устройство
Принцип работы регулятора скорости состоит в том, чтобы изменять напряжение и частоту оборотов двигателя. Это влияет на воздухообмен и изменяет мощность воздушного потока.
Для управления скоростью могут использоваться разные методы:
- Изменение напряжения, подающегося на обмотку.
- Изменение частоты тока.
Второй метод почти не используется, так как частотные приводы очень дорого стоят, во много раз больше самого вентилятора, и не всегда целесообразно их приобретать. В основном, практикуется первый способ.
Виды регуляторов оборотов
По принципу регулирования скорости различают несколько видов регуляторов:
Симисторный регулятор наиболее распространенный, он может охватывать даже не один, а несколько двигателей. Главное, чтобы величина тока не превышала предельную величину.
Частотные модели могут быть использованы в любых пределах от 0 до 480 В, их применяют для трехфазных двигателей вентиляторов мощностью до 75 кВт.
Трансформаторные регуляторы применяются для более мощных вентиляторов. Они однофазные или трехфазные, позволяют плавно снижать скорость оборотов, могут регулировать несколько вентиляторов.
Схемы подключения регуляторов оборотов вентилятора
Рассмотрим схемы подключения различных регуляторов.
Самым распространенным прибором является симисторный или тиристорный контроллер. Его можно подключить самостоятельно, используя схему. Каждый из тиристоров уменьшает напряжение. Регулировка производится при помощи блока управления. Мощность прибора ограничена, большого напряжения он не выдерживает.
Важные моменты:
- Двигатель вентилятора должен иметь защиту от перегрева.
- Нельзя использовать в качестве регуляторов диммеры от осветительных приборов.
Трансформаторный регулятор имеет следующий принцип работы:
На входе — питающее напряжение 220 В. Обмотка имеет несколько ответвлений, к которым подключается нагрузка, и тогда напряжение уменьшается. При понижении напряжения снижается и потребление электроэнергии. С помощью переключателя мотор подключается к нужной части обмотки и тогда напряжение меняется.
Трансформатор с электронным управлением работает по другой схеме. Он имеет транзисторную схему, и, модулируя импульсы, может менять напряжение плавно. Чем короче импульсы и длиннее паузы между ними, тем меньше напряжение.
Ступенчатый трансформаторный регулятор
В работе этого прибора используется трансформатор. Это обычный трансформатор, только у него одна обмотка и от части витков есть отводы.
Управление регулятора осуществляется путем ступенчатого изменения напряжения. На низких скоростях уровень шума понижен.
Обычно используется пять ступеней напряжения, то есть вентилятор будет иметь пять скоростей вращения. Такой регулятор можно использовать и для реверсивных вентиляторов, и для нескольких аппаратов одновременно. Максимальная мощность вентилятора должна быть не более 80 Вт.
Автотрансформатор с электронным управлением
Эти модели относятся к разряду наиболее надежных и мощных. По цене это наиболее дорогой прибор. Он имеет небольшие габариты и вес.
Работает такой регулятор по принципу широтно-импульсной модуляции. Изменения импульсов и пауз между ними дает изменение напряжения и, соответственно, скорости вращения вентилятора.
Прибор имеет пониженный уровень шума, скорость оборотов может понижаться или повышаться ступенчато, в соответствии с понижением или повышением напряжения.
Тиристорные и симисторные контроллеры
Это самые распространенные приборы для регулировки вращения вентиляторов. Они используются для однофазных вентиляторов переменного тока. Тиристорный контроллер изменяет скорость вращения в большую или меньшую сторону в зависимости от изменения напряжения. Может быть установлен в приборах, где есть защита от перегрева.
Симисторный регулятор — это разновидность тиристорного. В нем используется симистор, который равен двум параллельно включенным тиристорам. Приборы могут применяться как для переменного, так и для постоянного тока. Скорость регулирования — от минимально необходимого напряжения до 220 В.
Они имеют небольшой размер и плавно переключают скорость, имеют простую конструкцию. К недостаткам можно отнести повышенный шум и небольшой срок службы.